
(The work of Trevis Rothwell and Nelson Beebe has been assigned or licensed to the
FSF.)

GNUC Language Intro and Reference Manual

Richard Stallman
and

Trevis Rothwell
plus Nelson Beebe
on floating point

Copyright c© 2022 Richard Stallman and Free Software Foundation, Inc.

(The work of Trevis Rothwell and Nelson Beebe has been assigned or licensed
to the FSF.)

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with the Invariant Sections being “GNU General Pub-
lic License,” with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy
and modify this GNU manual. Buying copies from the FSF sup-
ports it in developing GNU and promoting software freedom.”

WILL BE Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
ISBN ?-??????-??-?

i

Short Contents

Preface . 1

1 The First Example . 3

2 A Complete Program . 10

3 Storage and Data . 13
4 Beyond Integers . 14

5 Lexical Syntax . 18
6 Arithmetic . 24

7 Assignment Expressions . 33

8 Execution Control Expressions . 39
9 Binary Operator Grammar . 44

10 Order of Execution . 46
11 Primitive Data Types . 50
12 Constants . 57
13 Type Size . 66

14 Pointers . 68

15 Structures . 80

16 Arrays . 97

17 Enumeration Types . 105

18 Defining Typedef Names . 107
19 Statements . 109
20 Variables . 127

21 Type Qualifiers . 136

22 Functions . 141

23 Compatible Types . 164
24 Type Conversions . 165

25 Scope . 168
26 Preprocessing . 171
27 Integers in Depth . 206
28 Floating Point in Depth . 208

ii

29 Compilation . 229
30 Directing Compilation . 230
A Type Alignment . 236

B Aliasing . 238

C Digraphs . 242
D Attributes in Declarations . 243
E Signals . 245

F GNU Free Documentation License . 246
Index of Symbols and Keywords . 255

Concept Index . 257

iii

Table of Contents

Preface . 1

1 The First Example . 3
1.1 Example: Recursive Fibonacci . 3

1.1.1 Function Header . 4
1.1.2 Function Body . 4

1.2 The Stack, And Stack Overflow . 5
1.3 Example: Iterative Fibonacci . 6

2 A Complete Program . 10
2.1 Complete Program Example . 10
2.2 Complete Program Explanation . 10
2.3 Complete Program, Line by Line . 11
2.4 Compiling the Example Program . 12

3 Storage and Data . 13

4 Beyond Integers . 14
4.1 An Example with Non-Integer Numbers . 14
4.2 An Example with Arrays . 15
4.3 Calling the Array Example . 16
4.4 Variations for Array Example . 17

5 Lexical Syntax . 18
5.1 Write Programs in English! . 18
5.2 Characters . 18
5.3 Whitespace . 19
5.4 Comments . 19
5.5 Identifiers . 21
5.6 Operators and Punctuation . 21
5.7 Line Continuation . 22

6 Arithmetic . 24
6.1 Basic Arithmetic . 24
6.2 Integer Arithmetic . 25
6.3 Integer Overflow . 25

6.3.1 Overflow with Unsigned Integers . 26
6.3.2 Overflow with Signed Integers . 26

iv

6.4 Mixed-Mode Arithmetic . 27
6.5 Division and Remainder . 28
6.6 Numeric Comparisons . 29
6.7 Shift Operations . 29

6.7.1 Shifting Makes New Bits . 30
6.7.2 Caveats for Shift Operations . 30
6.7.3 Shift Hacks . 31

6.8 Bitwise Operations . 31

7 Assignment Expressions . 33
7.1 Simple Assignment . 33
7.2 Lvalues . 34
7.3 Modifying Assignment . 34
7.4 Increment and Decrement Operators . 35
7.5 Postincrement and Postdecrement . 36
7.6 Pitfall: Assignment in Subexpressions . 37
7.7 Write Assignments in Separate Statements . 37

8 Execution Control Expressions 39
8.1 Logical Operators . 39
8.2 Logical Operators and Comparisons . 40
8.3 Logical Operators and Assignments . 40
8.4 Conditional Expression . 41

8.4.1 Rules for Conditional Operator . 41
8.4.2 Conditional Operator Branches . 41

8.5 Comma Operator . 42
8.5.1 The Uses of the Comma Operator . 42
8.5.2 Clean Use of the Comma Operator . 43
8.5.3 When Not to Use the Comma Operator 43

9 Binary Operator Grammar . 44

10 Order of Execution . 46
10.1 Reordering of Operands . 46
10.2 Associativity and Ordering . 46
10.3 Sequence Points . 47
10.4 Postincrement and Ordering . 47
10.5 Ordering of Operands . 48
10.6 Optimization and Ordering . 48

v

11 Primitive Data Types . 50
11.1 Integer Data Types . 50

11.1.1 Basic Integers . 50
11.1.2 Signed and Unsigned Types . 51
11.1.3 Narrow Integers . 51
11.1.4 Conversion among Integer Types . 52
11.1.5 Boolean Type . 52
11.1.6 Integer Variations . 52

11.2 Floating-Point Data Types . 53
11.3 Complex Data Types . 54
11.4 The Void Type . 55
11.5 Other Data Types . 55
11.6 Type Designators . 55

12 Constants . 57
12.1 Integer Constants . 57
12.2 Integer Constant Data Types . 57
12.3 Floating-Point Constants . 58
12.4 Imaginary Constants . 59
12.5 Invalid Numbers . 60
12.6 Character Constants . 60
12.7 String Constants . 61
12.8 UTF-8 String Constants . 62
12.9 Unicode Character Codes . 63
12.10 Wide Character Constants . 63
12.11 Wide String Constants . 64

13 Type Size . 66

14 Pointers . 68
14.1 Address of Data . 68
14.2 Pointer Types . 68
14.3 Pointer-Variable Declarations . 68
14.4 Pointer-Type Designators . 69
14.5 Dereferencing Pointers . 69
14.6 Null Pointers . 70
14.7 Dereferencing Null or Invalid Pointers . 70
14.8 Void Pointers . 71
14.9 Pointer Comparison . 72
14.10 Pointer Arithmetic . 73
14.11 Pointers and Arrays . 75
14.12 Pointer Arithmetic at Low Level . 75
14.13 Pointer Increment and Decrement . 76
14.14 Drawbacks of Pointer Arithmetic . 78

vi

14.15 Pointer-Integer Conversion . 79
14.16 Printing Pointers . 79

15 Structures . 80
15.1 Referencing Structure Fields . 81
15.2 Dynamic Memory Allocation . 82
15.3 Field Offset . 83
15.4 Structure Layout . 83
15.5 Packed Structures . 84
15.6 Bit Fields . 85
15.7 Bit Field Packing . 86
15.8 const Fields . 86
15.9 Arrays of Length Zero . 87
15.10 Flexible Array Fields . 87
15.11 Overlaying Different Structures . 88
15.12 Structure Assignment . 89
15.13 Unions . 89
15.14 Packing With Unions . 90
15.15 Cast to a Union Type . 91
15.16 Structure Constructors . 92
15.17 Unnamed Types as Fields . 92
15.18 Incomplete Types . 93
15.19 Intertwined Incomplete Types . 94
15.20 Type Tags . 95

16 Arrays . 97
16.1 Accessing Array Elements . 97
16.2 Declaring an Array . 98
16.3 Strings . 98
16.4 Array Type Designators . 100
16.5 Incomplete Array Types . 100
16.6 Limitations of C Arrays . 100
16.7 Multidimensional Arrays . 101
16.8 Constructing Array Values . 103
16.9 Arrays of Variable Length . 103

17 Enumeration Types . 105

18 Defining Typedef Names . 107

vii

19 Statements . 109
19.1 Expression Statement . 109
19.2 if Statement . 109
19.3 if-else Statement . 110
19.4 Blocks . 110
19.5 return Statement . 111
19.6 Loop Statements . 112

19.6.1 while Statement . 112
19.6.2 do-while Statement . 112
19.6.3 break Statement . 112
19.6.4 for Statement . 113
19.6.5 Example of for . 114
19.6.6 Omitted for-Expressions . 114
19.6.7 for-Index Declarations . 115
19.6.8 continue Statement . 116

19.7 switch Statement . 117
19.8 Example of switch . 118
19.9 Duff’s Device . 119
19.10 Case Ranges . 120
19.11 Null Statement . 120
19.12 goto Statement and Labels . 120
19.13 Locally Declared Labels . 123
19.14 Labels as Values . 124

19.14.1 Label Value Uses . 124
19.14.2 Label Value Caveats . 125

19.15 Statements and Declarations in Expressions 125

20 Variables . 127
20.1 Variable Declarations . 127

20.1.1 Declaring Arrays and Pointers . 127
20.1.2 Combining Variable Declarations . 128

20.2 Initializers . 129
20.3 Designated Initializers . 130
20.4 Referring to a Type with __auto_type . 131
20.5 Local Variables . 131
20.6 File-Scope Variables . 132
20.7 Static Local Variables . 133
20.8 extern Declarations . 133
20.9 Allocating File-Scope Variables . 134
20.10 auto and register . 135
20.11 Omitting Types in Declarations . 135

viii

21 Type Qualifiers . 136
21.1 const Variables and Fields . 136
21.2 volatile Variables and Fields . 137
21.3 restrict-Qualified Pointers . 138
21.4 restrict Pointer Example . 139

22 Functions . 141
22.1 Function Definitions . 141

22.1.1 Function Parameter Variables . 141
22.1.2 Forward Function Declarations . 142
22.1.3 Static Functions . 143
22.1.4 Arrays as Parameters . 143

22.1.4.1 Array parameters are pointers . 143
22.1.4.2 Passing array arguments . 144
22.1.4.3 Type qualifiers on array parameters 145

22.1.5 Functions That Accept Structure Arguments 146
22.2 Function Declarations . 147
22.3 Function Calls . 148
22.4 Function Call Semantics . 149
22.5 Function Pointers . 149

22.5.1 Declaring Function Pointers . 150
22.5.2 Assigning Function Pointers . 151
22.5.3 Calling Function Pointers . 151

22.6 The main Function . 151
22.6.1 Returning Values from main . 152
22.6.2 Accessing Command-line Parameters 153
22.6.3 Accessing Environment Variables . 153

22.7 Advanced Function Features . 154
22.7.1 Variable-Length Array Parameters . 154
22.7.2 Variable-Length Parameter Lists . 155
22.7.3 Nested Functions . 157
22.7.4 Inline Function Definitions . 160

22.8 Obsolete Function Features . 162
22.8.1 Older GNU C Inlining . 162
22.8.2 Old-Style Function Definitions . 162

23 Compatible Types . 164

24 Type Conversions . 165
24.1 Explicit Type Conversion . 165
24.2 Assignment Type Conversions . 165
24.3 Argument Promotions . 166
24.4 Operand Promotions . 167
24.5 Common Type . 167

ix

25 Scope . 168

26 Preprocessing . 171
26.1 Preprocessing Overview . 171
26.2 Directives . 171
26.3 Preprocessing Tokens . 172
26.4 Header Files . 174

26.4.1 #include Syntax . 174
26.4.2 #include Operation . 175
26.4.3 Search Path . 176
26.4.4 Once-Only Headers . 177
26.4.5 Computed Includes . 178

26.5 Macros . 179
26.5.1 Object-like Macros . 179
26.5.2 Function-like Macros . 181
26.5.3 Macro Arguments . 182
26.5.4 Stringification . 183
26.5.5 Concatenation . 185
26.5.6 Variadic Macros . 186
26.5.7 Predefined Macros . 188
26.5.8 Undefining and Redefining Macros . 191
26.5.9 Directives Within Macro Arguments . 192
26.5.10 Macro Pitfalls . 192

26.5.10.1 Misnesting . 192
26.5.10.2 Operator Precedence Problems 193
26.5.10.3 Swallowing the Semicolon . 194
26.5.10.4 Duplication of Side Effects . 194
26.5.10.5 Using __auto_type for Local Variables 195
26.5.10.6 Self-Referential Macros . 196
26.5.10.7 Argument Prescan . 197

26.6 Conditionals . 198
26.6.1 Uses of Conditional Directives . 199
26.6.2 Syntax of Preprocessing Conditionals 199

26.6.2.1 The #ifdef directive . 199
26.6.2.2 The #if directive . 200
26.6.2.3 The defined test . 201
26.6.2.4 The #else directive . 202
26.6.2.5 The #elif directive . 202

26.6.3 Deleted Code . 203
26.7 Diagnostics . 203
26.8 Line Control . 204
26.9 Null Directive . 205

x

27 Integers in Depth . 206
27.1 Integer Representations . 206
27.2 Maximum and Minimum Values . 207

28 Floating Point in Depth . 208
28.1 Floating-Point Representations . 208
28.2 Floating-Point Type Specifications . 208
28.3 Special Floating-Point Values . 209
28.4 Invalid Optimizations . 210
28.5 Floating Arithmetic Exception Flags . 211
28.6 Exact Floating-Point Arithmetic . 211
28.7 Rounding . 212
28.8 Rounding Issues . 213
28.9 Significance Loss . 213
28.10 Fused Multiply-Add . 215
28.11 Error Recovery . 216
28.12 Exact Floating-Point Constants . 217
28.13 Handling Infinity . 218
28.14 Handling NaN . 218
28.15 Signed Zeros . 219
28.16 Scaling by Powers of the Base . 220
28.17 Rounding Control . 220
28.18 Machine Epsilon . 221
28.19 Complex Arithmetic . 223
28.20 Round-Trip Base Conversion . 225
28.21 Further Reading . 225

29 Compilation . 229

30 Directing Compilation . 230
30.1 Pragmas . 230

30.1.1 Pragma Basics . 230
30.1.2 Severity Pragmas . 232
30.1.3 Optimization Pragmas . 233

30.2 Static Assertions . 234

Appendix A Type Alignment 236

Appendix B Aliasing . 238
B.1 Aliasing and Alignment . 238
B.2 Aliasing and Length . 238
B.3 Type Rules for Aliasing . 239

xi

Appendix C Digraphs . 242

Appendix D Attributes in Declarations 243

Appendix E Signals . 245

Appendix F GNU Free
Documentation License . 246

Index of Symbols and Keywords 255

Concept Index . 257

1

Preface

This manual explains the C language for use with the GNU Compiler Col-
lection (GCC) on the GNU/Linux system and other systems. We refer to
this dialect as GNU C. If you already know C, you can use this as a reference
manual.

If you understand basic concepts of programming but know nothing about
C, you can read this manual sequentially from the beginning to learn the C
language.

If you are a beginner to programming, we recommend you first learn a
language with automatic garbage collection and no explicit pointers, rather
than starting with C. Good choices include Lisp, Scheme, Python and Java.
C’s explicit pointers mean that programmers must be careful to avoid certain
kinds of errors.

C is a venerable language; it was first used in 1973. The GNU C Compiler,
which was subsequently extended into the GNU Compiler Collection, was
first released in 1987. Other important languages were designed based on
C: once you know C, it gives you a useful base for learning C++, C#, Java,
Scala, D, Go, and more.

The special advantage of C is that it is fairly simple while allowing close
access to the computer’s hardware, which previously required writing in as-
sembler language to describe the individual machine instructions. Some have
called C a “high-level assembler language” because of its explicit pointers
and lack of automatic management of storage. As one wag put it, “C com-
bines the power of assembler language with the convenience of assembler
language.” However, C is far more portable, and much easier to read and
write, than assembler language.

This manual focuses on the GNU C language supported by the GNU
Compiler Collection, version ???. When a construct may be absent or work
differently in other C compilers, we say so. When it is not part of ISO
standard C, we say it is a “GNU C extension,” because it is useful to know
that; however, other dialects and standards are not the focus of this manual.
We keep those notes short, unless it is vital to say more. For the same
reason, we hardly mention C++ or other languages that the GNU Compiler
Collection supports.

Some aspects of the meaning of C programs depend on the target plat-
form: which computer, and which operating system, the compiled code will
run on. Where this is the case, we say so.

The C language provides no built-in facilities for performing such common
operations as input/output, memory management, string manipulation, and
the like. Instead, these facilities are defined in a standard library, which
is automatically available in every C program. See The GNU C Library
Reference Manual.

2

This manual incorporates the former GNU C Preprocessor Manual, which
was among the earliest GNU Manuals. It also uses some text from the earlier
GNU C Manual that was written by Trevis Rothwell and James Youngman.

GNU C has many obscure features, each one either for historical compati-
bility or meant for very special situations. We have left them to a companion
manual, the GNU C Obscurities Manual, which will be published digitally
later.

3

1 The First Example

This chapter presents the source code for a very simple C program and uses
it to explain a few features of the language. If you already know the basic
points of C presented in this chapter, you can skim it or skip it.

1.1 Example: Recursive Fibonacci
To introduce the most basic features of C, let’s look at code for a simple
mathematical function that does calculations on integers. This function
calculates the nth number in the Fibonacci series, in which each number is
the sum of the previous two: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

int
fib (int n)
{

if (n <= 2) /* This avoids infinite recursion. */
return 1;

else
return fib (n - 1) + fib (n - 2);

}

This very simple program illustrates several features of C:

• A function definition, whose first two lines constitute the function
header. See Section 22.1 [Function Definitions], page 141.

• A function parameter n, referred to as the variable n inside the function
body. See Section 22.1.1 [Function Parameter Variables], page 141.
A function definition uses parameters to refer to the argument values
provided in a call to that function.

• Arithmetic. C programs add with ‘+’ and subtract with ‘-’. See
Chapter 6 [Arithmetic], page 24.

• Numeric comparisons. The operator ‘<=’ tests for “less than or equal.”
See Section 6.6 [Numeric Comparisons], page 29.

• Integer constants written in base 10. See Section 12.1 [Integer Con-
stants], page 57.

• A function call. The function call fib (n - 1) calls the function fib,
passing as its argument the value n - 1. See Section 22.3 [Function
Calls], page 148.

• A comment, which starts with ‘/*’ and ends with ‘*/’. The comment
has no effect on the execution of the program. Its purpose is to provide
explanations to people reading the source code. Including comments
in the code is tremendously important—they provide background infor-
mation so others can understand the code more quickly. See Section 5.4
[Comments], page 19.

• Two kinds of statements, the return statement and the if. . .else
statement. See Chapter 19 [Statements], page 109.

Chapter 1: The First Example 4

• Recursion. The function fib calls itself; that is called a recursive call.
These are valid in C, and quite common.

The fib function would not be useful if it didn’t return. Thus, recursive
definitions, to be of any use, must avoid infinite recursion.

This function definition prevents infinite recursion by specially handling
the case where n is two or less. Thus the maximum depth of recursive
calls is less than n.

1.1.1 Function Header

In our example, the first two lines of the function definition are the header.
Its purpose is to state the function’s name and say how it is called:

int
fib (int n)

says that the function returns an integer (type int), its name is fib, and it
takes one argument named n which is also an integer. (Data types will be
explained later, in Chapter 11 [Primitive Types], page 50.)

1.1.2 Function Body

The rest of the function definition is called the function body. Like every
function body, this one starts with ‘{’, ends with ‘}’, and contains zero
or more statements and declarations. Statements specify actions to take,
whereas declarations define names of variables, functions, and so on. Each
statement and each declaration ends with a semicolon (‘;’).

Statements and declarations often contain expressions; an expression is
a construct whose execution produces a value of some data type, but may
also take actions through “side effects” that alter subsequent execution. A
statement, by contrast, does not have a value; it affects further execution of
the program only through the actions it takes.

This function body contains no declarations, and just one statement, but
that one is a complex statement in that it contains nested statements. This
function uses two kinds of statements:

return The return statement makes the function return immediately.
It looks like this:

return value;

Its meaning is to compute the expression value and exit the func-
tion, making it return whatever value that expression produced.
For instance,

return 1;

returns the integer 1 from the function, and

return fib (n - 1) + fib (n - 2);

returns a value computed by performing two function calls as
specified and adding their results.

Chapter 1: The First Example 5

if...else
The if. . .else statement is a conditional. Each time it exe-
cutes, it chooses one of its two substatements to execute and
ignores the other. It looks like this:

if (condition)
if-true-statement

else
if-false-statement

Its meaning is to compute the expression condition and, if it’s
“true,” execute if-true-statement. Otherwise, execute if-false-
statement. See Section 19.3 [if-else Statement], page 110.

Inside the if. . .else statement, condition is simply an expres-
sion. It’s considered “true” if its value is nonzero. (A compari-
son operation, such as n <= 2, produces the value 1 if it’s “true”
and 0 if it’s “false.” See Section 6.6 [Numeric Comparisons],
page 29.) Thus,

if (n <= 2)
return 1;

else
return fib (n - 1) + fib (n - 2);

first tests whether the value of n is less than or equal to 2. If so,
the expression n <= 2 has the value 1. So execution continues
with the statement

return 1;

Otherwise, execution continues with this statement:

return fib (n - 1) + fib (n - 2);

Each of these statements ends the execution of the function and
provides a value for it to return. See Section 19.5 [return State-
ment], page 111.

Calculating fib using ordinary integers in C works only for n < 47, be-
cause the value of fib (47) is too large to fit in type int. The addition
operation that tries to add fib (46) and fib (45) cannot deliver the cor-
rect result. This occurrence is called integer overflow.

Overflow can manifest itself in various ways, but one thing that can’t
possibly happen is to produce the correct value, since that can’t fit in the
space for the value. See Section 6.3 [Integer Overflow], page 25.

See Chapter 22 [Functions], page 141, for a full explanation about func-
tions.

1.2 The Stack, And Stack Overflow
Recursion has a drawback: there are limits to how many nested function calls
a program can make. In C, each function call allocates a block of memory

Chapter 1: The First Example 6

which it uses until the call returns. C allocates these blocks consecutively
within a large area of memory known as the stack, so we refer to the blocks
as stack frames.

The size of the stack is limited; if the program tries to use too much,
that causes the program to fail because the stack is full. This is called stack
overflow.

Stack overflow on GNU/Linux typically manifests itself as the signal
named SIGSEGV, also known as a “segmentation fault.” By default, this
signal terminates the program immediately, rather than letting the program
try to recover, or reach an expected ending point. (We commonly say in this
case that the program “crashes”). See Appendix E [Signals], page 245.

It is inconvenient to observe a crash by passing too large an argument to
recursive Fibonacci, because the program would run a long time before it
crashes. This algorithm is simple but ridiculously slow: in calculating fib
(n), the number of (recursive) calls fib (1) or fib (2) that it makes equals
the final result.

However, you can observe stack overflow very quickly if you use this
function instead:

int
fill_stack (int n)
{

if (n <= 1) /* This limits the depth of recursion. */
return 1;

else
return fill_stack (n - 1);

}

Under gNewSense GNU/Linux on the Lemote Yeeloong, without opti-
mization and using the default configuration, an experiment showed there is
enough stack space to do 261906 nested calls to that function. One more,
and the stack overflows and the program crashes. On another platform,
with a different configuration, or with a different function, the limit might
be bigger or smaller.

1.3 Example: Iterative Fibonacci
Here’s a much faster algorithm for computing the same Fibonacci series.
It is faster for two reasons. First, it uses iteration (that is, repetition or
looping) rather than recursion, so it doesn’t take time for a large number of
function calls. But mainly, it is faster because the number of repetitions is
small—only n.

int
fib (int n)
{

int last = 1; /* Initial value is fib (1). */
int prev = 0; /* Initial value controls fib (2). */

Chapter 1: The First Example 7

int i;

for (i = 1; i < n; ++i)
/* If n is 1 or less, the loop runs zero times, */
/* since i < n is false the first time. */
{
/* Now last is fib (i)

and prev is fib (i − 1). */
/* Compute fib (i + 1). */
int next = prev + last;
/* Shift the values down. */
prev = last;
last = next;
/* Now last is fib (i + 1)

and prev is fib (i).
But that won’t stay true for long,
because we are about to increment i. */

}

return last;
}

This definition computes fib (n) in a time proportional to n. The com-
ments in the definition explain how it works: it advances through the series,
always keeps the last two values in last and prev, and adds them to get
the next value.

Here are the additional C features that this definition uses:

Internal blocks
Within a function, wherever a statement is called for, you can
write a block. It looks like { . . . } and contains zero or more
statements and declarations. (You can also use additional blocks
as statements in a block.)

The function body also counts as a block, which is why it can
contain statements and declarations.

See Section 19.4 [Blocks], page 110.

Declarations of local variables
This function body contains declarations as well as statements.
There are three declarations directly in the function body, as
well as a fourth declaration in an internal block. Each starts
with int because it declares a variable whose type is integer.
One declaration can declare several variables, but each of these
declarations is simple and declares just one variable.

Variables declared inside a block (either a function body or an
internal block) are local variables. These variables exist only
within that block; their names are not defined outside the block,

Chapter 1: The First Example 8

and exiting the block deallocates their storage. This example
declares four local variables: last, prev, i, and next.

The most basic local variable declaration looks like this:

type variablename;

For instance,

int i;

declares the local variable i as an integer. See Section 20.1
[Variable Declarations], page 127.

Initializers When you declare a variable, you can also specify its initial
value, like this:

type variablename = value;

For instance,

int last = 1;

declares the local variable last as an integer (type int) and
starts it off with the value 1. See Section 20.2 [Initializers],
page 129.

Assignment
Assignment: a specific kind of expression, written with the ‘=’
operator, that stores a new value in a variable or other place.
Thus,

variable = value

is an expression that computes value and stores the value in
variable. See Chapter 7 [Assignment Expressions], page 33.

Expression statements
An expression statement is an expression followed by a semi-
colon. That computes the value of the expression, then ignores
the value.

An expression statement is useful when the expression changes
some data or has other side effects—for instance, with function
calls, or with assignments as in this example. See Section 19.1
[Expression Statement], page 109.

Using an expression with no side effects in an expression state-
ment is pointless except in very special cases. For instance, the
expression statement x; would examine the value of x and ignore
it. That is not useful.

Increment operator
The increment operator is ‘++’. ++i is an expression that is short
for i = i + 1. See Section 7.4 [Increment/Decrement], page 35.

for statements
A for statement is a clean way of executing a statement
repeatedly—a loop (see Section 19.6 [Loop Statements],
page 112). Specifically,

9

for (i = 1; i < n; ++i)
body

means to start by doing i = 1 (set i to one) to prepare for the
loop. The loop itself consists of

• Testing i < n and exiting the loop if that’s false.

• Executing body.

• Advancing the loop (executing ++i, which increments i).

The net result is to execute body with 0 in i, then with 1 in
i, and so on, stopping just before the repetition where i would
equal n.

The body of the for statement must be one and only one state-
ment. You can’t write two statements in a row there; if you try
to, only the first of them will be treated as part of the loop.

The way to put multiple statements in those places is to group
them with a block, and that’s what we do in this example.

10

2 A Complete Program

It’s all very well to write a Fibonacci function, but you cannot run it by
itself. It is a useful program, but it is not a complete program.

In this chapter we present a complete program that contains the fib
function. This example shows how to make the program start, how to make
it finish, how to do computation, and how to print a result.

2.1 Complete Program Example
Here is the complete program that uses the simple, recursive version of the
fib function (see Section 1.1 [Recursive Fibonacci], page 3):

#include <stdio.h>

int
fib (int n)
{

if (n <= 2) /* This avoids infinite recursion. */
return 1;

else
return fib (n - 1) + fib (n - 2);

}

int
main (void)
{

printf ("Fibonacci series item %d is %d\n",
20, fib (20));

return 0;
}

This program prints a message that shows the value of fib (20).

Now for an explanation of what that code means.

2.2 Complete Program Explanation
This sample program prints a message that shows the value of fib (20),
and exits with code 0 (which stands for successful execution).

Every C program is started by running the function named main. There-
fore, the example program defines a function named main to provide a way
to start it. Whatever that function does is what the program does. See
Section 22.6 [The main Function], page 151.

The main function is the first one called when the program runs, but it
doesn’t come first in the example code. The order of the function definitions
in the source code makes no difference to the program’s meaning.

Chapter 2: A Complete Program 11

The initial call to main always passes certain arguments, but main does
not have to pay attention to them. To ignore those arguments, define main
with void as the parameter list. (void as a function’s parameter list nor-
mally means “call with no arguments,” but main is a special case.)

The function main returns 0 because that is the conventional way for main
to indicate successful execution. It could instead return a positive integer to
indicate failure, and some utility programs have specific conventions for the
meaning of certain numeric failure codes. See Section 22.6.1 [Values from
main], page 152.

The simplest way to print text in C is by calling the printf function, so
here we explain what that does.

The first argument to printf is a string constant (see Section 12.7 [String
Constants], page 61) that is a template for output. The function printf
copies most of that string directly as output, including the newline charac-
ter at the end of the string, which is written as ‘\n’. The output goes to
the program’s standard output destination, which in the usual case is the
terminal.

‘%’ in the template introduces a code that substitutes other text into the
output. Specifically, ‘%d’ means to take the next argument to printf and
substitute it into the text as a decimal number. (The argument for ‘%d’ must
be of type int; if it isn’t, printf will malfunction.) So the output is a line
that looks like this:

Fibonacci series item 20 is 6765

This program does not contain a definition for printf because it is defined
by the C library, which makes it available in all C programs. However, each
program does need to declare printf so it will be called correctly. The
#include line takes care of that; it includes a header file called stdio.h
into the program’s code. That file is provided by the operating system and
it contains declarations for the many standard input/output functions in the
C library, one of which is printf.

Don’t worry about header files for now; we’ll explain them later in
Section 26.4 [Header Files], page 174.

The first argument of printf does not have to be a string constant; it
can be any string (see Section 16.3 [Strings], page 98). However, using a
constant is the most common case.

To learn more about printf and other facilities of the C library, see The
GNU C Library Reference Manual.

2.3 Complete Program, Line by Line
Here’s the same example, explained line by line. Beginners, do you find this
helpful or not? Would you prefer a different layout for the example? Please
tell rms@gnu.org.

#include <stdio.h> /* Include declaration of usual */

Chapter 2: A Complete Program 12

/* I/O functions such as printf. */
/* Most programs need these. */

int /* This function returns an int. */
fib (int n) /* Its name is fib; */

/* its argument is called n. */
{ /* Start of function body. */
/* This stops the recursion from being infinite. */
if (n <= 2) /* If n is 1 or 2, */
return 1; /* make fib return 1. */

else /* otherwise, add the two previous */
/* fibonacci numbers. */

return fib (n - 1) + fib (n - 2);
}

int /* This function returns an int. */
main (void) /* Start here; ignore arguments. */
{ /* Print message with numbers in it. */

printf ("Fibonacci series item %d is %d\n",
20, fib (20));

return 0; /* Terminate program, report success. */
}

2.4 Compiling the Example Program
To run a C program requires converting the source code into an executable
file. This is called compiling the program, and the command to do that
using GNU C is gcc.

This example program consists of a single source file. If we call that file
fib1.c, the complete command to compile it is this:

gcc -g -O -o fib1 fib1.c

Here, -g says to generate debugging information, -O says to optimize at the
basic level, and -o fib1 says to put the executable program in the file fib1.

To run the program, use its file name as a shell command. For instance,

./fib1

However, unless you are sure the program is correct, you should expect to
need to debug it. So use this command,

gdb fib1

which starts the GDB debugger (see Section “A Sample GDB Session” in
Debugging with GDB) so you can run and debug the executable program
fib1.

See Chapter 29 [Compilation], page 229, for an introduction to compiling
more complex programs which consist of more than one source file.

13

3 Storage and Data

Storage in C programs is made up of units called bytes. On nearly all
computers, a byte consists of 8 bits, but there are a few peculiar comput-
ers (mostly “embedded controllers” for very small systems) where a byte is
longer than that. This manual does not try to explain the peculiarity of
those computers; we assume that a byte is 8 bits.

Every C data type is made up of a certain number of bytes; that number
is the data type’s size. See Chapter 13 [Type Size], page 66, for details. The
types signed char and unsigned char are one byte long; use those types
to operate on data byte by byte. See Section 11.1.2 [Signed and Unsigned
Types], page 51. You can refer to a series of consecutive bytes as an array
of char elements; that’s what an ASCII string looks like in memory. See
Section 12.7 [String Constants], page 61.

14

4 Beyond Integers

So far we’ve presented programs that operate on integers. In this chap-
ter we’ll present examples of handling non-integral numbers and arrays of
numbers.

4.1 An Example with Non-Integer Numbers
Here’s a function that operates on and returns floating point numbers that
don’t have to be integers. Floating point represents a number as a fraction
together with a power of 2. (For more detail, see Section 11.2 [Floating-Point
Data Types], page 53.) This example calculates the average of three floating
point numbers that are passed to it as arguments:

double
average_of_three (double a, double b, double c)
{

return (a + b + c) / 3;
}

The values of the parameter a, b and c do not have to be integers, and
even when they happen to be integers, most likely their average is not an
integer.

double is the usual data type in C for calculations on floating-point
numbers.

To print a double with printf, we must use ‘%f’ instead of ‘%d’:

printf ("Average is %f\n",
average_of_three (1.1, 9.8, 3.62));

The code that calls printf must pass a double for printing with ‘%f’ and
an int for printing with ‘%d’. If the argument has the wrong type, printf
will produce garbage output.

Here’s a complete program that computes the average of three specific
numbers and prints the result:

double
average_of_three (double a, double b, double c)
{

return (a + b + c) / 3;
}

int
main (void)
{

printf ("Average is %f\n",
average_of_three (1.1, 9.8, 3.62));

return 0;
}

Chapter 4: Beyond Integers 15

From now on we will not present examples of calls to main. Instead we
encourage you to write them for yourself when you want to test executing
some code.

4.2 An Example with Arrays
A function to take the average of three numbers is very specific and limited.
A more general function would take the average of any number of numbers.
That requires passing the numbers in an array. An array is an object in
memory that contains a series of values of the same data type. This chapter
presents the basic concepts and use of arrays through an example; for the
full explanation, see Chapter 16 [Arrays], page 97.

Here’s a function definition to take the average of several floating-point
numbers, passed as type double. The first parameter, length, specifies how
many numbers are passed. The second parameter, input_data, is an array
that holds those numbers.

double
avg_of_double (int length, double input_data[])
{

double sum = 0;
int i;

for (i = 0; i < length; i++)
sum = sum + input_data[i];

return sum / length;
}

This introduces the expression to refer to an element of an array: input_
data[i] means the element at index i in input_data. The index of the
element can be any expression with an integer value; in this case, the ex-
pression is i. See Section 16.1 [Accessing Array Elements], page 97.

The lowest valid index in an array is 0, not 1, and the highest valid
index is one less than the number of elements. (This is known as zero-origin
indexing.)

This example also introduces the way to declare that a function parameter
is an array. Such declarations are modeled after the syntax for an element of
the array. Just as double foo declares that foo is of type double, double
input_data[] declares that each element of input_data is of type double.
Therefore, input_data itself has type “array of double.”

When declaring an array parameter, it’s not necessary to say how long the
array is. In this case, the parameter input_data has no length information.
That’s why the function needs another parameter, length, for the caller to
provide that information to the function avg_of_double.

Chapter 4: Beyond Integers 16

4.3 Calling the Array Example
To call the function avg_of_double requires making an array and then pass-
ing it as an argument. Here is an example.

{
/* The array of values to average. */
double nums_to_average[5];
/* The average, once we compute it. */
double average;

/* Fill in elements of nums_to_average. */

nums_to_average[0] = 58.7;
nums_to_average[1] = 5.1;
nums_to_average[2] = 7.7;
nums_to_average[3] = 105.2;
nums_to_average[4] = -3.14159;

average = avg_of_double (5, nums_to_average);

/* . . .now make use of average. . . */
}

This shows an array subscripting expression again, this time on the left
side of an assignment, storing a value into an element of an array.

It also shows how to declare a local variable that is an array: double
nums_to_average[5];. Since this declaration allocates the space for the
array, it needs to know the array’s length. You can specify the length with
any expression whose value is an integer, but in this declaration the length
is a constant, the integer 5.

The name of the array, when used by itself as an expression, stands for
the address of the array’s data, and that’s what gets passed to the function
avg_of_double in avg_of_double (5, nums_to_average).

We can make the code easier to maintain by avoiding the need to write
5, the array length, when calling avg_of_double. That way, if we change
the array to include more elements, we won’t have to change that call. One
way to do this is with the sizeof operator:

average = avg_of_double ((sizeof (nums_to_average)
/ sizeof (nums_to_average[0])),
nums_to_average);

This computes the number of elements in nums_to_average by dividing
its total size by the size of one element. See Chapter 13 [Type Size], page 66,
for more details of using sizeof.

We don’t show in this example what happens after storing the result
of avg_of_double in the variable average. Presumably more code would

Chapter 4: Beyond Integers 17

follow that uses that result somehow. (Why compute the average and not
use it?) But that isn’t part of this topic.

4.4 Variations for Array Example
The code to call avg_of_double has two declarations that start with the
same data type:

/* The array of values to average. */
double nums_to_average[5];
/* The average, once we compute it. */
double average;

In C, you can combine the two, like this:

double nums_to_average[5], average;

This declares nums_to_average so each of its elements is a double, and
average so that it simply is a double.

However, while you can combine them, that doesn’t mean you should. If
it is useful to write comments about the variables, and usually it is, then it’s
clearer to keep the declarations separate so you can put a comment on each
one.

We set all of the elements of the array nums_to_average with assign-
ments, but it is more convenient to use an initializer in the declaration:

{
/* The array of values to average. */
double nums_to_average[]
= { 58.7, 5.1, 7.7, 105.2, -3.14159 };

/* The average, once we compute it. */
average = avg_of_double ((sizeof (nums_to_average)

/ sizeof (nums_to_average[0])),
nums_to_average);

/* . . .now make use of average. . . */
}

The array initializer is a comma-separated list of values, delimited by
braces. See Section 20.2 [Initializers], page 129.

Note that the declaration does not specify a size for nums_to_average,
so the size is determined from the initializer. There are five values in the
initializer, so nums_to_average gets length 5. If we add another element to
the initializer, nums_to_average will have six elements.

Because the code computes the number of elements from the size of the
array, using sizeof, the program will operate on all the elements in the
initializer, regardless of how many those are.

18

5 Lexical Syntax

To start the full description of the C language, we explain the lexical syntax
and lexical units of C code. The lexical units of a programming language
are known as tokens. This chapter covers all the tokens of C except for
constants, which are covered in a later chapter (see Chapter 12 [Constants],
page 57). One vital kind of token is the identifier (see Section 5.5 [Identifiers],
page 21), which is used for names of any kind.

5.1 Write Programs in English!
In principle, you can write the function and variable names in a program,
and the comments, in any human language. C allows any kinds of char-
acters in comments, and you can put non-ASCII characters into identifiers
with a special prefix. However, to enable programmers in all countries to
understand and develop the program, it is best given today’s circumstances
to write identifiers and comments in English.

English is the one language that programmers in all countries gener-
ally study. If a program’s names are in English, most programmers in
Bangladesh, Belgium, Bolivia, Brazil, and Bulgaria can understand them.
Most programmers in those countries can speak English, or at least read
it, but they do not read each other’s languages at all. In India, with so
many languages, two programmers may have no common language other
than English.

If you don’t feel confident in writing English, do the best you can, and
follow each English comment with a version in a language you write bet-
ter; add a note asking others to translate that to English. Someone will
eventually do that.

The program’s user interface is a different matter. We don’t need to
choose one language for that; it is easy to support multiple languages and
let each user choose the language to use. This requires writing the program to
support localization of its interface. (The gettext package exists to support
this; see Section “Message Translation” in The GNU C Library Reference
Manual.) Then a community-based translation effort can provide support
for all the languages users want to use.

5.2 Characters
GNU C source files are usually written in the ASCII character set, which was
defined in the 1960s for English. However, they can also include Unicode
characters represented in the UTF-8 multibyte encoding. This makes it
possible to represent accented letters such as ‘á’, as well as other scripts
such as Arabic, Chinese, Cyrillic, Hebrew, Japanese, and Korean.1

1 On some obscure systems, GNU C uses UTF-EBCDIC instead of UTF-8, but that is
not worth describing in this manual.

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8

Chapter 5: Lexical Syntax 19

In C source code, non-ASCII characters are valid in comments, in wide
character constants (see Section 12.10 [Wide Character Constants], page 63),
and in string constants (see Section 12.7 [String Constants], page 61).

Another way to specify non-ASCII characters in constants (character or
string) and identifiers is with an escape sequence starting with backslash,
specifying the intended Unicode character. (See Section 12.9 [Unicode Char-
acter Codes], page 63.) This specifies non-ASCII characters without putting
a real non-ASCII character in the source file itself.

C accepts two-character aliases called digraphs for certain characters. See
Appendix C [Digraphs], page 242.

5.3 Whitespace
Whitespace means characters that exist in a file but appear blank in a printed
listing of a file (or traditionally did appear blank, several decades ago).
The C language requires whitespace in order to separate two consecutive
identifiers, or to separate an identifier from a numeric constant. Other than
that, and a few special situations described later, whitespace is optional; you
can put it in when you wish, to make the code easier to read.

Space and tab in C code are treated as whitespace characters. So are
line breaks. You can represent a line break with the newline character (also
called linefeed or LF), CR (carriage return), or the CRLF sequence (two
characters: carriage return followed by a newline character).

The formfeed character, Control-L, was traditionally used to divide a
file into pages. It is still used this way in source code, and the tools that
generate nice printouts of source code still start a new page after each “form-
feed” character. Dividing code into pages separated by formfeed characters
is a good way to break it up into comprehensible pieces and show other
programmers where they start and end.

The vertical tab character, Control-K, was traditionally used to make
printing advance down to the next section of a page. We know of no partic-
ular reason to use it in source code, but it is still accepted as whitespace in
C.

Comments are also syntactically equivalent to whitespace.

5.4 Comments
A comment encapsulates text that has no effect on the program’s execution
or meaning.

The purpose of comments is to explain the code to people that read
it. Writing good comments for your code is tremendously important—they
should provide background information that helps programmers understand
the reasons why the code is written the way it is. You, returning to the code
six months from now, will need the help of these comments to remember
why you wrote it this way.

Chapter 5: Lexical Syntax 20

Outdated comments that become incorrect are counterproductive, so part
of the software developer’s responsibility is to update comments as needed
to correspond with changes to the program code.

C allows two kinds of comment syntax, the traditional style and the C++
style. A traditional C comment starts with ‘/*’ and ends with ‘*/’. For
instance,

/* This is a comment in traditional C syntax. */

A traditional comment can contain ‘/*’, but these delimiters do not nest
as pairs. The first ‘*/’ ends the comment regardless of whether it contains
‘/*’ sequences.

/* This /* is a comment */ But this is not! */

A line comment starts with ‘//’ and ends at the end of the line. For
instance,

// This is a comment in C++ style.

Line comments do nest, in effect, because ‘//’ inside a line comment is
part of that comment:

// this whole line is // one comment
This is code, not comment.

It is safe to put line comments inside block comments, or vice versa.

/* traditional comment
// contains line comment
more traditional comment

*/ text here is not a comment

// line comment /* contains traditional comment */

But beware of commenting out one end of a traditional comment with a
line comment. The delimiter ‘/*’ doesn’t start a comment if it occurs inside
an already-started comment.

// line comment /* That would ordinarily begin a block comment.
Oops! The line comment has ended;
this isn’t a comment any more. */

Comments are not recognized within string constants. "/* blah */" is
the string constant ‘/* blah */’, not an empty string.

In this manual we show the text in comments in a variable-width font,
for readability, but this font distinction does not exist in source files.

A comment is syntactically equivalent to whitespace, so it always sepa-
rates tokens. Thus,

int/* comment */foo;
is equivalent to

int foo;

but clean code always uses real whitespace to separate the comment visually
from surrounding code.

Chapter 5: Lexical Syntax 21

5.5 Identifiers
An identifier (name) in C is a sequence of letters and digits, as well as ‘_’,
that does not start with a digit. Most compilers also allow ‘$’. An identifier
can be as long as you like; for example,

int anti_dis_establishment_arian_ism;

Letters in identifiers are case-sensitive in C; thus, a and A are two different
identifiers.

Identifiers in C are used as variable names, function names, typedef
names, enumeration constants, type tags, field names, and labels. Certain
identifiers in C are keywords, which means they have specific syntactic mean-
ings. Keywords in C are reserved words, meaning you cannot use them in
any other way. For instance, you can’t define a variable or function named
return or if.

You can also include other characters, even non-ASCII characters, in
identifiers by writing their Unicode character names, which start with ‘\u’
or ‘\U’, in the identifier name. See Section 12.9 [Unicode Character Codes],
page 63. However, it is usually a bad idea to use non-ASCII characters in
identifiers, and when they are written in English, they never need non-ASCII
characters. See Section 5.1 [English], page 18.

Whitespace is required to separate two consecutive identifiers, or to sep-
arate an identifier from a preceding or following numeric constant.

5.6 Operators and Punctuation
Here we describe the lexical syntax of operators and punctuation in C. The
specific operators of C and their meanings are presented in subsequent chap-
ters.

Most operators in C consist of one or two characters that can’t be used in
identifiers. The characters used for operators in C are ‘!~^&|*/%+-=<>,.?:’.

Some operators are a single character. For instance, ‘-’ is the operator
for negation (with one operand) and the operator for subtraction (with two
operands).

Some operators are two characters. For example, ‘++’ is the increment op-
erator. Recognition of multicharacter operators works by grouping together
as many consecutive characters as can constitute one operator.

For instance, the character sequence ‘++’ is always interpreted as the
increment operator; therefore, if we want to write two consecutive instances
of the operator ‘+’, we must separate them with a space so that they do not
combine as one token. Applying the same rule, a+++++b is always tokenized
as a++ ++ + b, not as a++ + ++b, even though the latter could be part of a
valid C program and the former could not (since a++ is not an lvalue and
thus can’t be the operand of ++).

Chapter 5: Lexical Syntax 22

A few C operators are keywords rather than special characters. They
include sizeof (see Chapter 13 [Type Size], page 66) and _Alignof (see
Appendix A [Type Alignment], page 236).

The characters ‘;{}[]()’ are used for punctuation and grouping. Semi-
colon (‘;’) ends a statement. Braces (‘{’ and ‘}’) begin and end a block
at the statement level (see Section 19.4 [Blocks], page 110), and surround
the initializer (see Section 20.2 [Initializers], page 129) for a variable with
multiple elements or components (such as arrays or structures).

Square brackets (‘[’ and ‘]’) do array indexing, as in array[5].

Parentheses are used in expressions for explicit nesting of expressions (see
Section 6.1 [Basic Arithmetic], page 24), around the parameter declarations
in a function declaration or definition, and around the arguments in a func-
tion call, as in printf ("Foo %d\n", i) (see Section 22.3 [Function Calls],
page 148). Several kinds of statements also use parentheses as part of their
syntax—for instance, if statements, for statements, while statements, and
switch statements. See Section 19.2 [if Statement], page 109, and following
sections.

Parentheses are also required around the operand of the operator key-
words sizeof and _Alignof when the operand is a data type rather than a
value. See Chapter 13 [Type Size], page 66.

5.7 Line Continuation
The sequence of a backslash and a newline is ignored absolutely anywhere
in a C program. This makes it possible to split a single source line into mul-
tiple lines in the source file. GNU C tolerates and ignores other whitespace
between the backslash and the newline. In particular, it always ignores a
CR (carriage return) character there, in case some text editor decided to end
the line with the CRLF sequence.

The main use of line continuation in C is for macro definitions that would
be inconveniently long for a single line (see Section 26.5 [Macros], page 179).

It is possible to continue a line comment onto another line with backslash-
newline. You can put backslash-newline in the middle of an identifier, even a
keyword, or an operator. You can even split ‘/*’, ‘*/’, and ‘//’ onto multiple
lines with backslash-newline. Here’s an ugly example:

/\
*
*/ fo\
o +\
= 1\
0;

That’s equivalent to ‘/* */ foo += 10;’.

Don’t do those things in real programs, since they make code hard to
read.

23

Note: For the sake of using certain tools on the source code, it is wise
to end every source file with a newline character which is not preceded by a
backslash, so that it really ends the last line.

24

6 Arithmetic

Arithmetic operators in C attempt to be as similar as possible to the abstract
arithmetic operations, but it is impossible to do this perfectly. Numbers in
a computer have a finite range of possible values, and non-integer values
have a limit on their possible accuracy. Nonetheless, in most cases you will
encounter no surprises in using ‘+’ for addition, ‘-’ for subtraction, and ‘*’
for multiplication.

Each C operator has a precedence, which is its rank in the grammatical
order of the various operators. The operators with the highest precedence
grab adjoining operands first; these expressions then become operands for
operators of lower precedence. We give some information about precedence
of operators in this chapter where we describe the operators; for the full
explanation, see Chapter 9 [Binary Operator Grammar], page 44.

The arithmetic operators always promote their operands before operating
on them. This means converting narrow integer data types to a wider data
type (see Section 24.4 [Operand Promotions], page 167). If you are just
learning C, don’t worry about this yet.

Given two operands that have different types, most arithmetic operations
convert them both to their common type. For instance, if one is int and
the other is double, the common type is double. (That’s because double
can represent all the values that an int can hold, but not vice versa.) For
the full details, see Section 24.5 [Common Type], page 167.

6.1 Basic Arithmetic
Basic arithmetic in C is done with the usual binary operators of algebra:
addition (‘+’), subtraction (‘-’), multiplication (‘*’) and division (‘/’). The
unary operator ‘-’ is used to change the sign of a number. The unary +
operator also exists; it yields its operand unaltered.

‘/’ is the division operator, but dividing integers may not give the result
you expect. Its value is an integer, which is not equal to the mathematical
quotient when that is a fraction. Use ‘%’ to get the corresponding integer re-
mainder when necessary. See Section 6.5 [Division and Remainder], page 28.
Floating point division yields value as close as possible to the mathematical
quotient.

These operators use algebraic syntax with the usual algebraic precedence
rule (see Chapter 9 [Binary Operator Grammar], page 44) that multipli-
cation and division are done before addition and subtraction, but you can
use parentheses to explicitly specify how the operators nest. They are left-
associative (see Section 10.2 [Associativity and Ordering], page 46). Thus,

-a + b - c + d * e / f

is equivalent to

(((-a) + b) - c) + ((d * e) / f)

Chapter 6: Arithmetic 25

6.2 Integer Arithmetic
Each of the basic arithmetic operations in C has two variants for integers:
signed and unsigned. The choice is determined by the data types of their
operands.

Each integer data type in C is either signed or unsigned. A signed type
can hold a range of positive and negative numbers, with zero near the middle
of the range. An unsigned type can hold only nonnegative numbers; its range
starts with zero and runs upward.

The most basic integer types are int, which normally can hold numbers
from −2,147,483,648 to 2,147,483,647, and unsigned int, which normally
can hold numbers from 0 to 4,294.967,295. (This assumes int is 32 bits
wide, always true for GNU C on real computers but not always on embedded
controllers.) See Section 11.1 [Integer Types], page 50, for full information
about integer types.

When a basic arithmetic operation is given two signed operands, it does
signed arithmetic. Given two unsigned operands, it does unsigned arith-
metic.

If one operand is unsigned int and the other is int, the operator treats
them both as unsigned. More generally, the common type of the operands
determines whether the operation is signed or not. See Section 24.5 [Com-
mon Type], page 167.

Printing the results of unsigned arithmetic with printf using ‘%d’ can
produce surprising results for values far away from zero. Even though the
rules above say that the computation was done with unsigned arithmetic,
the printed result may appear to be signed!

The explanation is that the bit pattern resulting from addition, subtrac-
tion or multiplication is actually the same for signed and unsigned opera-
tions. The difference is only in the data type of the result, which affects the
interpretation of the result bit pattern, and whether the arithmetic operation
can overflow (see the next section).

But ‘%d’ doesn’t know its argument’s data type. It sees only the value’s
bit pattern, and it is defined to interpret that as signed int. To print it as
unsigned requires using ‘%u’ instead of ‘%d’. See Section “Formatted Output”
in The GNU C Library Reference Manual.

Arithmetic in C never operates directly on narrow integer types (those
with fewer bits than int; Section 11.1.3 [Narrow Integers], page 51). In-
stead it “promotes” them to int. See Section 24.4 [Operand Promotions],
page 167.

6.3 Integer Overflow
When the mathematical value of an arithmetic operation doesn’t fit in the
range of the data type in use, that’s called overflow. When it happens in
integer arithmetic, it is integer overflow.

Chapter 6: Arithmetic 26

Integer overflow happens only in arithmetic operations. Type conversion
operations, by definition, do not cause overflow, not even when the result
can’t fit in its new type. See Section 11.1.4 [Integer Conversion], page 52.

Signed numbers use two’s-complement representation, in which the most
negative number lacks a positive counterpart (see Chapter 27 [Integers in
Depth], page 206). Thus, the unary ‘-’ operator on a signed integer can
overflow.

6.3.1 Overflow with Unsigned Integers

Unsigned arithmetic in C ignores overflow; it produces the true result modulo
the nth power of 2, where n is the number of bits in the data type. We say
it “truncates” the true result to the lowest n bits.

A true result that is negative, when taken modulo the nth power of 2,
yields a positive number. For instance,

unsigned int x = 1;
unsigned int y;

y = -x;

causes overflow because the negative number −1 can’t be stored in an un-
signed type. The actual result, which is −1 modulo the nth power of 2, is
one less than the nth power of 2. That is the largest value that the unsigned
data type can store. For a 32-bit unsigned int, the value is 4,294,967,295.
See Section 27.2 [Maximum and Minimum Values], page 207.

Adding that number to itself, as here,

unsigned int z;

z = y + y;

ought to yield 8,489,934,590; however, that is again too large to fit, so over-
flow truncates the value to 4,294,967,294. If that were a signed integer, it
would mean −2, which (not by coincidence) equals −1 + −1.

6.3.2 Overflow with Signed Integers

For signed integers, the result of overflow in C is in principle undefined,
meaning that anything whatsoever could happen. Therefore, C compil-
ers can do optimizations that treat the overflow case with total unconcern.
(Since the result of overflow is undefined in principle, one cannot claim that
these optimizations are erroneous.)

Watch out: These optimizations can do surprising things. For instance,

int i;
. . .
if (i < i + 1)

x = 5;

could be optimized to do the assignment unconditionally, because the if-
condition is always true if i + 1 does not overflow.

Chapter 6: Arithmetic 27

GCC offers compiler options to control handling signed integer overflow.
These options operate per module; that is, each module behaves according
to the options it was compiled with.

These two options specify particular ways to handle signed integer over-
flow, other than the default way:

-fwrapv Make signed integer operations well-defined, like unsigned inte-
ger operations: they produce the n low-order bits of the true
result. The highest of those n bits is the sign bit of the result.
With -fwrapv, these out-of-range operations are not considered
overflow, so (strictly speaking) integer overflow never happens.

The option -fwrapv enables some optimizations based on the
defined values of out-of-range results. In GCC 8, it disables op-
timizations that are based on assuming signed integer operations
will not overflow.

-ftrapv Generate a signal SIGFPE when signed integer overflow occurs.
This terminates the program unless the program handles the
signal. See Appendix E [Signals], page 245.

One other option is useful for finding where overflow occurs:

-fsanitize=signed-integer-overflow
Output a warning message at run time when signed integer over-
flow occurs. This checks the ‘+’, ‘*’, and ‘-’ operators. This takes
priority over -ftrapv.

6.4 Mixed-Mode Arithmetic
Mixing integers and floating-point numbers in a basic arithmetic operation
converts the integers automatically to floating point. In most cases, this
gives exactly the desired results. But sometimes it matters precisely where
the conversion occurs.

If i and j are integers, (i + j) * 2.0 adds them as an integer, then con-
verts the sum to floating point for the multiplication. If the addition gets an
overflow, that is not equivalent to converting both integers to floating point
and then adding them. You can get the latter result by explicitly convert-
ing the integers, as in ((double) i + (double) j) * 2.0. See Section 24.1
[Explicit Type Conversion], page 165.

Adding or multiplying several values, including some integers and some
floating point, does the operations left to right. Thus, 3.0 + i + j converts
i to floating point, then adds 3.0, then converts j to floating point and adds
that. You can specify a different order using parentheses: 3.0 + (i + j)
adds i and j first and then adds that result (converting to floating point)
to 3.0. In this respect, C differs from other languages, such as Fortran.

Chapter 6: Arithmetic 28

6.5 Division and Remainder
Division of integers in C rounds the result to an integer. The result is always
rounded towards zero.

16 / 3 ⇒ 5
-16 / 3 ⇒ -5
16 / -3 ⇒ -5
-16 / -3 ⇒ 5

To get the corresponding remainder, use the ‘%’ operator:

16 % 3 ⇒ 1
-16 % 3 ⇒ -1
16 % -3 ⇒ 1
-16 % -3 ⇒ -1

‘%’ has the same operator precedence as ‘/’ and ‘*’.

From the rounded quotient and the remainder, you can reconstruct the
dividend, like this:

int
original_dividend (int divisor, int quotient, int remainder)
{

return divisor * quotient + remainder;
}

To do unrounded division, use floating point. If only one operand is
floating point, ‘/’ converts the other operand to floating point.

16.0 / 3 ⇒ 5.333333333333333
16 / 3.0 ⇒ 5.333333333333333
16.0 / 3.0 ⇒ 5.333333333333333
16 / 3 ⇒ 5

The remainder operator ‘%’ is not allowed for floating-point operands,
because it is not needed. The concept of remainder makes sense for integers
because the result of division of integers has to be an integer. For floating
point, the result of division is a floating-point number, in other words a
fraction, which will differ from the exact result only by a very small amount.

There are functions in the standard C library to calculate remainders from
integral-values division of floating-point numbers. See Section “Remainder
Functions” in The GNU C Library Reference Manual.

Integer division overflows in one specific case: dividing the smallest neg-
ative value for the data type (see Section 27.2 [Maximum and Minimum
Values], page 207) by −1. That’s because the correct result, which is the
corresponding positive number, does not fit (see Section 6.3 [Integer Over-
flow], page 25) in the same number of bits. On some computers now in use,
this always causes a signal SIGFPE (see Appendix E [Signals], page 245), the
same behavior that the option -ftrapv specifies (see Section 6.3.2 [Signed
Overflow], page 26).

Chapter 6: Arithmetic 29

Division by zero leads to unpredictable results—depending on the type
of computer, it might cause a signal SIGFPE, or it might produce a numeric
result.

Watch out: Make sure the program does not divide by zero. If you can’t
prove that the divisor is not zero, test whether it is zero, and skip the division
if so.

6.6 Numeric Comparisons
There are two kinds of comparison operators: equality and ordering. Equal-
ity comparisons test whether two expressions have the same value. The
result is a truth value: a number that is 1 for “true” and 0 for “false.”

a == b /* Test for equal. */
a != b /* Test for not equal. */

The equality comparison is written == because plain = is the assignment
operator.

Ordering comparisons test which operand is greater or less. Their results
are truth values. These are the ordering comparisons of C:

a < b /* Test for less-than. */
a > b /* Test for greater-than. */
a <= b /* Test for less-than-or-equal. */
a >= b /* Test for greater-than-or-equal. */

For any integers a and b, exactly one of the comparisons a < b, a == b and
a > b is true, just as in mathematics. However, if a and b are special floating
point values (not ordinary numbers), all three can be false. See Section 28.3
[Special Float Values], page 209, and Section 28.4 [Invalid Optimizations],
page 210.

6.7 Shift Operations
Shifting an integer means moving the bit values to the left or right within
the bits of the data type. Shifting is defined only for integers. Here’s the
way to write it:

/* Left shift. */
5 << 2 ⇒ 20

/* Right shift. */
5 >> 2 ⇒ 1

The left operand is the value to be shifted, and the right operand says how
many bits to shift it (the shift count). The left operand is promoted (see
Section 24.4 [Operand Promotions], page 167), so shifting never operates on
a narrow integer type; it’s always either int or wider. The value of the shift
operator has the same type as the promoted left operand.

Chapter 6: Arithmetic 30

6.7.1 Shifting Makes New Bits

A shift operation shifts towards one end of the number and has to generate
new bits at the other end.

Shifting left one bit must generate a new least significant bit. It always
brings in zero there. It is equivalent to multiplying by the appropriate power
of 2. For example,

5 << 3 is equivalent to 5 * 2*2*2
-10 << 4 is equivalent to -10 * 2*2*2*2

The meaning of shifting right depends on whether the data type is signed
or unsigned (see Section 11.1.2 [Signed and Unsigned Types], page 51). For
a signed data type, it performs “arithmetic shift,” which keeps the number’s
sign unchanged by duplicating the sign bit. For an unsigned data type, it
performs “logical shift,” which always shifts in zeros at the most significant
bit.

In both cases, shifting right one bit is division by two, rounding towards
negative infinity. For example,

(unsigned) 19 >> 2 ⇒ 4
(unsigned) 20 >> 2 ⇒ 5
(unsigned) 21 >> 2 ⇒ 5

For negative left operand a, a >> 1 is not equivalent to a / 2. They both
divide by 2, but ‘/’ rounds toward zero.

The shift count must be zero or greater. Shifting by a negative number
of bits gives machine-dependent results.

6.7.2 Caveats for Shift Operations

Warning: If the shift count is greater than or equal to the width in bits of
the first operand, the results are machine-dependent. Logically speaking, the
“correct” value would be either -1 (for right shift of a negative number) or
0 (in all other cases), but what it really generates is whatever the machine’s
shift instruction does in that case. So unless you can prove that the second
operand is not too large, write code to check it at run time.

Warning: Never rely on how the shift operators relate in precedence
to other arithmetic binary operators. Programmers don’t remember these
precedences, and won’t understand the code. Always use parentheses to
explicitly specify the nesting, like this:

a + (b << 5) /* Shift first, then add. */
(a + b) << 5 /* Add first, then shift. */

Note: according to the C standard, shifting of signed values isn’t guaran-
teed to work properly when the value shifted is negative, or becomes negative
during the operation of shifting left. However, only pedants have a reason
to be concerned about this; only computers with strange shift instructions
could plausibly do this wrong. In GNU C, the operation always works as
expected,

Chapter 6: Arithmetic 31

6.7.3 Shift Hacks

You can use the shift operators for various useful hacks. For example, given
a date specified by day of the month d, month m, and year y, you can store
the entire date in a single integer date:

unsigned int d = 12;
unsigned int m = 6;
unsigned int y = 1983;
unsigned int date = ((y << 4) + m) << 5) + d;

To extract the original day, month, and year out of date, use a combination
of shift and remainder.

d = date % 32;
m = (date >> 5) % 16;
y = date >> 9;

-1 << LOWBITS is a clever way to make an integer whose LOWBITS lowest
bits are all 0 and the rest are all 1. -(1 << LOWBITS) is equivalent to that,
due to associativity of multiplication, since negating a value is equivalent to
multiplying it by −1.

6.8 Bitwise Operations
Bitwise operators operate on integers, treating each bit independently. They
are not allowed for floating-point types.

The examples in this section use binary constants, starting with ‘0b’ (see
Section 12.1 [Integer Constants], page 57). They stand for 32-bit integers of
type int.

~a Unary operator for bitwise negation; this changes each bit of a
from 1 to 0 or from 0 to 1.

~0b10101000 ⇒ 0b11111111111111111111111101010111
~0 ⇒ 0b11111111111111111111111111111111
~0b11111111111111111111111111111111 ⇒ 0
~ (-1) ⇒ 0

It is useful to remember that ~x + 1 equals -x, for integers, and
~x equals -x - 1. The last example above shows this with −1
as x.

a & b Binary operator for bitwise “and” or “conjunction.” Each bit in
the result is 1 if that bit is 1 in both a and b.

0b10101010 & 0b11001100 ⇒ 0b10001000

a | b Binary operator for bitwise “or” (“inclusive or” or “disjunc-
tion”). Each bit in the result is 1 if that bit is 1 in either a
or b.

0b10101010 | 0b11001100 ⇒ 0b11101110

Chapter 6: Arithmetic 32

a ^ b Binary operator for bitwise “xor” (“exclusive or”). Each bit in
the result is 1 if that bit is 1 in exactly one of a and b.

0b10101010 ^ 0b11001100 ⇒ 0b01100110

To understand the effect of these operators on signed integers, keep in
mind that all modern computers use two’s-complement representation (see
Section 27.1 [Integer Representations], page 206) for negative integers. This
means that the highest bit of the number indicates the sign; it is 1 for a
negative number and 0 for a positive number. In a negative number, the
value in the other bits increases as the number gets closer to zero, so that
0b111. . .111 is −1 and 0b100. . .000 is the most negative possible integer.

Warning: C defines a precedence ordering for the bitwise binary opera-
tors, but you should never rely on it. You should never rely on how bitwise
binary operators relate in precedence to the arithmetic and shift binary op-
erators. Other programmers don’t remember this precedence ordering, so
always use parentheses to explicitly specify the nesting.

For example, suppose offset is an integer that specifies the offset within
shared memory of a table, except that its bottom few bits (LOWBITS says
how many) are special flags. Here’s how to get just that offset and add it to
the base address.

shared_mem_base + (offset & (-1 << LOWBITS))

Thanks to the outer set of parentheses, we don’t need to know whether
‘&’ has higher precedence than ‘+’. Thanks to the inner set, we don’t need
to know whether ‘&’ has higher precedence than ‘<<’. But we can rely on all
unary operators to have higher precedence than any binary operator, so we
don’t need parentheses around the left operand of ‘<<’.

33

7 Assignment Expressions

As a general concept in programming, an assignment is a construct that
stores a new value into a place where values can be stored—for instance, in
a variable. Such places are called lvalues (see Section 7.2 [Lvalues], page 34)
because they are locations that hold a value.

An assignment in C is an expression because it has a value; we call it an
assignment expression. A simple assignment looks like

lvalue = value-to-store

We say it assigns the value of the expression value-to-store to the location
lvalue, or that it stores value-to-store there. You can think of the “l” in
“lvalue” as standing for “left,” since that’s what you put on the left side of
the assignment operator.

However, that’s not the only way to use an lvalue, and not all lvalues can
be assigned to. To use the lvalue in the left side of an assignment, it has to
be modifiable. In C, that means it was not declared with the type qualifier
const (see Section 21.1 [const], page 136).

The value of the assignment expression is that of lvalue after the new
value is stored in it. This means you can use an assignment inside other
expressions. Assignment operators are right-associative so that

x = y = z = 0;

is equivalent to

x = (y = (z = 0));

This is the only useful way for them to associate; the other way,

((x = y) = z) = 0;

would be invalid since an assignment expression such as x = y is not valid as
an lvalue.

Warning: Write parentheses around an assignment if you nest it inside an-
other expression, unless that is a conditional expression, or comma-separated
series, or another assignment.

7.1 Simple Assignment
A simple assignment expression computes the value of the right operand and
stores it into the lvalue on the left. Here is a simple assignment expression
that stores 5 in i:

i = 5

We say that this is an assignment to the variable i and that it assigns i the
value 5. It has no semicolon because it is an expression (so it has a value).
Adding a semicolon at the end would make it a statement (see Section 19.1
[Expression Statement], page 109).

Here is another example of a simple assignment expression. Its operands
are not simple, but the kind of assignment done here is simple assignment.

Chapter 7: Assignment Expressions 34

x[foo ()] = y + 6

A simple assignment with two different numeric data types converts the
right operand value to the lvalue’s type, if possible. It can convert any
numeric type to any other numeric type.

Simple assignment is also allowed on some non-numeric types: pointers
(see Chapter 14 [Pointers], page 68), structures (see Section 15.12 [Structure
Assignment], page 89), and unions (see Section 15.13 [Unions], page 89).

Warning: Assignment is not allowed on arrays because there are no array
values in C; C variables can be arrays, but these arrays cannot be manipu-
lated as wholes. See Section 16.6 [Limitations of C Arrays], page 100.

See Section 24.2 [Assignment Type Conversions], page 165, for the com-
plete rules about data types used in assignments.

7.2 Lvalues
An expression that identifies a memory space that holds a value is called an
lvalue, because it is a location that can hold a value.

The standard kinds of lvalues are:

• A variable.

• A pointer-dereference expression (see Section 14.5 [Pointer Dereference],
page 69) using unary ‘*’.

• A structure field reference (see Chapter 15 [Structures], page 80) using
‘.’, if the structure value is an lvalue.

• A structure field reference using ‘->’. This is always an lvalue since ‘->’
implies pointer dereference.

• A union alternative reference (see Section 15.13 [Unions], page 89), on
the same conditions as for structure fields.

• An array-element reference using ‘[. . .]’, if the array is an lvalue.

If an expression’s outermost operation is any other operator, that expres-
sion is not an lvalue. Thus, the variable x is an lvalue, but x + 0 is not,
even though these two expressions compute the same value (assuming x is a
number).

An array can be an lvalue (the rules above determine whether it is one),
but using the array in an expression converts it automatically to a pointer
to the first element. The result of this conversion is not an lvalue. Thus, if
the variable a is an array, you can’t use a by itself as the left operand of an
assignment. But you can assign to an element of a, such as a[0]. That is
an lvalue since a is an lvalue.

7.3 Modifying Assignment
You can abbreviate the common construct

lvalue = lvalue + expression

Chapter 7: Assignment Expressions 35

as

lvalue += expression

This is known as a modifying assignment. For instance,

i = i + 5;
i += 5;

shows two statements that are equivalent. The first uses simple assignment;
the second uses modifying assignment.

Modifying assignment works with any binary arithmetic operator. For
instance, you can subtract something from an lvalue like this,

lvalue -= expression

or multiply it by a certain amount like this,

lvalue *= expression

or shift it by a certain amount like this.

lvalue <<= expression
lvalue >>= expression

In most cases, this feature adds no power to the language, but it pro-
vides substantial convenience. Also, when lvalue contains code that has side
effects, the simple assignment performs those side effects twice, while the
modifying assignment performs them once. For instance,

x[foo ()] = x[foo ()] + 5;

calls foo twice, and it could return different values each time. If foo ()
returns 1 the first time and 3 the second time, then the effect could be to
add x[3] and 5 and store the result in x[1], or to add x[1] and 5 and store
the result in x[3]. We don’t know which of the two it will do, because C
does not specify which call to foo is computed first.

Such a statement is not well defined, and shouldn’t be used.

By contrast,

x[foo ()] += 5;

is well defined: it calls foo only once to determine which element of x to
adjust, and it adjusts that element by adding 5 to it.

7.4 Increment and Decrement Operators
The operators ‘++’ and ‘--’ are the increment and decrement operators.
When used on a numeric value, they add or subtract 1. We don’t consider
them assignments, but they are equivalent to assignments.

Using ‘++’ or ‘--’ as a prefix, before an lvalue, is called preincrement or
predecrement. This adds or subtracts 1 and the result becomes the expres-
sion’s value. For instance,

#include <stdio.h> /* Declares printf. */

int
main (void)

Chapter 7: Assignment Expressions 36

{
int i = 5;
printf ("%d\n", i);
printf ("%d\n", ++i);
printf ("%d\n", i);
return 0;

}

prints lines containing 5, 6, and 6 again. The expression ++i increments i
from 5 to 6, and has the value 6, so the output from printf on that line
says ‘6’.

Using ‘--’ instead, for predecrement,

#include <stdio.h> /* Declares printf. */

int
main (void)
{

int i = 5;
printf ("%d\n", i);
printf ("%d\n", --i);
printf ("%d\n", i);
return 0;

}

prints three lines that contain (respectively) ‘5’, ‘4’, and again ‘4’.

7.5 Postincrement and Postdecrement
Using ‘++’ or ‘--’ after an lvalue does something peculiar: it gets the value
directly out of the lvalue and then increments or decrement it. Thus, the
value of i++ is the same as the value of i, but i++ also increments i “a little
later.” This is called postincrement or postdecrement.

For example,

#include <stdio.h> /* Declares printf. */

int
main (void)
{

int i = 5;
printf ("%d\n", i);
printf ("%d\n", i++);
printf ("%d\n", i);
return 0;

}

prints lines containing 5, again 5, and 6. The expression i++ has the value
5, which is the value of i at the time, but it increments i from 5 to 6 just a
little later.

Chapter 7: Assignment Expressions 37

How much later is “just a little later”? That is flexible. The increment
has to happen by the next sequence point. In simple cases, that means by
the end of the statement. See Section 10.3 [Sequence Points], page 47.

If a unary operator precedes a postincrement or postincrement expression,
the increment nests inside:

-a++ is equivalent to -(a++)

That’s the only order that makes sense; -a is not an lvalue, so it can’t be
incremented.

7.6 Pitfall: Assignment in Subexpressions
In C, the order of computing parts of an expression is not fixed. Aside from
a few special cases, the operations can be computed in any order. If one part
of the expression has an assignment to x and another part of the expression
uses x, the result is unpredictable because that use might be computed before
or after the assignment.

Here’s an example of ambiguous code:

x = 20;
printf ("%d %d\n", x, x = 4);

If the second argument, x, is computed before the third argument, x = 4,
the second argument’s value will be 20. If they are computed in the other
order, the second argument’s value will be 4.

Here’s one way to make that code unambiguous:

y = 20;
printf ("%d %d\n", y, x = 4);

Here’s another way, with the other meaning:

x = 4;
printf ("%d %d\n", x, x);

This issue applies to all kinds of assignments, and to the increment and
decrement operators, which are equivalent to assignments. See Chapter 10
[Order of Execution], page 46, for more information about this.

However, it can be useful to write assignments inside an if-condition
or while-test along with logical operators. See Section 8.3 [Logicals and
Assignments], page 40.

7.7 Write Assignments in Separate Statements
It is often convenient to write an assignment inside an if-condition, but that
can reduce the readability of the program. Here’s an example of what to
avoid:

if (x = advance (x))
. . .

The idea here is to advance x and test if the value is nonzero. However,
readers might miss the fact that it uses ‘=’ and not ‘==’. In fact, writing ‘=’

Chapter 7: Assignment Expressions 38

where ‘==’ was intended inside a condition is a common error, so GNU C
can give warnings when ‘=’ appears in a way that suggests it’s an error.

It is much clearer to write the assignment as a separate statement, like
this:

x = advance (x);
if (x != 0)

. . .

This makes it unmistakably clear that x is assigned a new value.

Another method is to use the comma operator (see Section 8.5 [Comma
Operator], page 42), like this:

if (x = advance (x), x != 0)
. . .

However, putting the assignment in a separate statement is usually clearer
unless the assignment is very short, because it reduces nesting.

39

8 Execution Control Expressions

This chapter describes the C operators that combine expressions to control
which of those expressions execute, or in which order.

8.1 Logical Operators
The logical operators combine truth values, which are normally represented
in C as numbers. Any expression with a numeric value is a valid truth value:
zero means false, and any other value means true. A pointer type is also
meaningful as a truth value; a null pointer (which is zero) means false, and a
non-null pointer means true (see Section 14.2 [Pointer Types], page 68). The
value of a logical operator is always 1 or 0 and has type int (see Section 11.1
[Integer Types], page 50).

The logical operators are used mainly in the condition of an if statement,
or in the end test in a for statement or while statement (see Chapter 19
[Statements], page 109). However, they are valid in any context where an
integer-valued expression is allowed.

‘! exp’ Unary operator for logical “not.” The value is 1 (true) if exp is
0 (false), and 0 (false) if exp is nonzero (true).

Warning: if exp is anything but an lvalue or a function call, you
should write parentheses around it.

‘left && right’
The logical “and” binary operator computes left and, if neces-
sary, right. If both of the operands are true, the ‘&&’ expression
gives the value 1 (which is true). Otherwise, the ‘&&’ expres-
sion gives the value 0 (false). If left yields a false value, that
determines the overall result, so right is not computed.

‘left || right’
The logical “or” binary operator computes left and, if necessary,
right. If at least one of the operands is true, the ‘||’ expression
gives the value 1 (which is true). Otherwise, the ‘||’ expres-
sion gives the value 0 (false). If left yields a true value, that
determines the overall result, so right is not computed.

Warning: never rely on the relative precedence of ‘&&’ and ‘||’. When
you use them together, always use parentheses to specify explicitly how they
nest, as shown here:

if ((r != 0 && x % r == 0)
||
(s != 0 && x % s == 0))

Chapter 8: Execution Control Expressions 40

8.2 Logical Operators and Comparisons
The most common thing to use inside the logical operators is a comparison.
Conveniently, ‘&&’ and ‘||’ have lower precedence than comparison opera-
tors and arithmetic operators, so we can write expressions like this without
parentheses and get the nesting that is natural: two comparison operations
that must both be true.

if (r != 0 && x % r == 0)

This example also shows how it is useful that ‘&&’ guarantees to skip the
right operand if the left one turns out false. Because of that, this code never
tries to divide by zero.

This is equivalent:

if (r && x % r == 0)

A truth value is simply a number, so r as a truth value tests whether it is
nonzero. But r’s meaning is not a truth value—it is a number to divide by.
So it is better style to write the explicit != 0.

Here’s another equivalent way to write it:

if (!(r == 0) && x % r == 0)

This illustrates the unary ‘!’ operator, and the need to write parentheses
around its operand.

8.3 Logical Operators and Assignments
There are cases where assignments nested inside the condition can actually
make a program easier to read. Here is an example using a hypothetical
type list which represents a list; it tests whether the list has at least two
links, using hypothetical functions, nonempty which is true of the argument
is a nonempty list, and list_next which advances from one list link to the
next. We assume that a list is never a null pointer, so that the assignment
expressions are always “true.”

if (nonempty (list)
&& (temp1 = list_next (list))
&& nonempty (temp1)
&& (temp2 = list_next (temp1)))

. . . /* use temp1 and temp2 */

Here we get the benefit of the ‘&&’ operator, to avoid executing the rest of
the code if a call to nonempty says “false.” The only natural place to put
the assignments is among those calls.

It would be possible to rewrite this as several statements, but that could
make it much more cumbersome. On the other hand, when the test is even
more complex than this one, splitting it into multiple statements might be
necessary for clarity.

If an empty list is a null pointer, we can dispense with calling nonempty:

if ((temp1 = list_next (list))

Chapter 8: Execution Control Expressions 41

&& (temp2 = list_next (temp1)))
. . .

8.4 Conditional Expression
C has a conditional expression that selects one of two expressions to compute
and get the value from. It looks like this:

condition ? iftrue : iffalse

8.4.1 Rules for Conditional Operator

The first operand, condition, should be a value that can be compared with
zero—a number or a pointer. If it is true (nonzero), then the conditional ex-
pression computes iftrue and its value becomes the value of the conditional
expression. Otherwise the conditional expression computes iffalse and its
value becomes the value of the conditional expression. The conditional ex-
pression always computes just one of iftrue and iffalse, never both of them.

Here’s an example: the absolute value of a number x can be written as
(x >= 0 ? x : -x).

Warning: The conditional expression operators have rather low syntactic
precedence. Except when the conditional expression is used as an argument
in a function call, write parentheses around it. For clarity, always write
parentheses around it if it extends across more than one line.

Assignment operators and the comma operator (see Section 8.5 [Comma
Operator], page 42) have lower precedence than conditional expression op-
erators, so write parentheses around those when they appear inside a condi-
tional expression. See Chapter 10 [Order of Execution], page 46.

8.4.2 Conditional Operator Branches

We call iftrue and iffalse the branches of the conditional.

The two branches should normally have the same type, but a few excep-
tions are allowed. If they are both numeric types, the conditional converts
both to their common type (see Section 24.5 [Common Type], page 167).

With pointers (see Chapter 14 [Pointers], page 68), the two values can
be pointers to nearly compatible types (see Chapter 23 [Compatible Types],
page 164). In this case, the result type is a similar pointer whose target type
combines all the type qualifiers (see Chapter 21 [Type Qualifiers], page 136)
of both branches.

If one branch has type void * and the other is a pointer to an object (not
to a function), the conditional converts the void * branch to the type of the
other.

If one branch is an integer constant with value zero and the other is a
pointer, the conditional converts zero to the pointer’s type.

Chapter 8: Execution Control Expressions 42

In GNU C, you can omit iftrue in a conditional expression. In that
case, if condition is nonzero, its value becomes the value of the conditional
expression, after conversion to the common type. Thus,

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

Omitting iftrue is useful when condition has side effects. In that case,
writing that expression twice would carry out the side effects twice, but
writing it once does them just once. For example, if we suppose that the
function next_element advances a pointer variable to point to the next
element in a list and returns the new pointer,

next_element () ? : default_pointer

is a way to advance the pointer and use its new value if it isn’t null, but use
default_pointer if that is null. We must not do it this way,

next_element () ? next_element () : default_pointer

because it would advance the pointer a second time.

8.5 Comma Operator
The comma operator stands for sequential execution of expressions. The
value of the comma expression comes from the last expression in the se-
quence; the previous expressions are computed only for their side effects. It
looks like this:

exp1, exp2 . . .

You can bundle any number of expressions together this way, by putting
commas between them.

8.5.1 The Uses of the Comma Operator

With commas, you can put several expressions into a place that requires
just one expression—for example, in the header of a for statement. This
statement

for (i = 0, j = 10, k = 20; i < n; i++)

contains three assignment expressions, to initialize i, j and k. The syntax
of for requires just one expression for initialization; to include three assign-
ments, we use commas to bundle them into a single larger expression, i = 0,
j = 10, k = 20. This technique is also useful in the loop-advance expression,
the last of the three inside the for parentheses.

In the for statement and the while statement (see Section 19.6 [Loop
Statements], page 112), a comma provides a way to perform some side effect
before the loop-exit test. For example,

while (printf ("At the test, x = %d\n", x), x != 0)

Chapter 8: Execution Control Expressions 43

8.5.2 Clean Use of the Comma Operator

Always write parentheses around a series of comma operators, except when it
is at top level in an expression statement, or within the parentheses of an if,
for, while, or switch statement (see Chapter 19 [Statements], page 109).
For instance, in

for (i = 0, j = 10, k = 20; i < n; i++)

the commas between the assignments are clear because they are between a
parenthesis and a semicolon.

The arguments in a function call are also separated by commas, but that
is not an instance of the comma operator. Note the difference between

foo (4, 5, 6)

which passes three arguments to foo and

foo ((4, 5, 6))

which uses the comma operator and passes just one argument (with value
6).

Warning: don’t use the comma operator around an argument of a func-
tion unless it helps understand the code. When you do so, don’t put part of
another argument on the same line. Instead, add a line break to make the
parentheses around the comma operator easier to see, like this.

foo ((mumble (x, y), frob (z)),
*p)

8.5.3 When Not to Use the Comma Operator

You can use a comma in any subexpression, but in most cases it only makes
the code confusing, and it is clearer to raise all but the last of the comma-
separated expressions to a higher level. Thus, instead of this:

x = (y += 4, 8);

it is much clearer to write this:

y += 4, x = 8;

or this:

y += 4;
x = 8;

Use commas only in the cases where there is no clearer alternative in-
volving multiple statements.

By contrast, don’t hesitate to use commas in the expansion in a macro
definition. The trade-offs of code clarity are different in that case, because
the use of the macro may improve overall clarity so much that the ugliness
of the macro’s definition is a small price to pay. See Section 26.5 [Macros],
page 179.

44

9 Binary Operator Grammar

Binary operators are those that take two operands, one on the left and one
on the right.

All the binary operators in C are syntactically left-associative. This
means that a op b op c means (a op b) op c. However, you should only
write repeated operators without parentheses using ‘+’, ‘-’, ‘*’ and ‘/’, be-
cause those cases are clear from algebra. So it is ok to write a + b + c or a
- b - c, but never a == b == c or a % b % c.

Each C operator has a precedence, which is its rank in the grammatical
order of the various operators. The operators with the highest precedence
grab adjoining operands first; these expressions then become operands for
operators of lower precedence.

The precedence order of operators in C is fully specified, so any combi-
nation of operations leads to a well-defined nesting. We state only part of
the full precedence ordering here because it is bad practice for C code to
depend on the other cases. For cases not specified in this chapter, always
use parentheses to make the nesting explicit.1

You can depend on this subsequence of the precedence ordering (stated
from highest precedence to lowest):

1. Component access (‘.’ and ‘->’).

2. Unary prefix operators.

3. Unary postfix operators.

4. Multiplication, division, and remainder (they have the same prece-
dence).

5. Addition and subtraction (they have the same precedence).

6. Comparisons—but watch out!

7. Logical operators ‘&&’ and ‘||’—but watch out!

8. Conditional expression with ‘?’ and ‘:’.

9. Assignments.

10. Sequential execution (the comma operator, ‘,’).

Two of the lines in the above list say “but watch out!” That means that
the line covers operators with subtly different precedence. Never depend on
the grammar of C to decide how two comparisons nest; instead, always use
parentheses to specify their nesting.

You can let several ‘&&’ operators associate, or several ‘||’ operators, but
always use parentheses to show how ‘&&’ and ‘||’ nest with each other. See
Section 8.1 [Logical Operators], page 39.

1 Personal note from Richard Stallman: I wrote GCC without remembering anything
about the C precedence order beyond what’s stated here. I studied the full precedence
table to write the parser, and promptly forgot it again. If you need to look up the full
precedence order to understand some C code, fix the code with parentheses so nobody
else needs to do that.

Chapter 9: Binary Operator Grammar 45

There is one other precedence ordering that code can depend on:

1. Unary postfix operators.

2. Bitwise and shift operators—but watch out!

3. Conditional expression with ‘?’ and ‘:’.

The caveat for bitwise and shift operators is like that for logical operators:
you can let multiple uses of one bitwise operator associate, but always use
parentheses to control nesting of dissimilar operators.

These lists do not specify any precedence ordering between the bitwise
and shift operators of the second list and the binary operators above condi-
tional expressions in the first list. When they come together, parenthesize
them. See Section 6.8 [Bitwise Operations], page 31.

46

10 Order of Execution

The order of execution of a C program is not always obvious, and not nec-
essarily predictable. This chapter describes what you can count on.

10.1 Reordering of Operands
The C language does not necessarily carry out operations within an expres-
sion in the order they appear in the code. For instance, in this expression,

foo () + bar ()

foo might be called first or bar might be called first. If foo updates a datum
and bar uses that datum, the results can be unpredictable.

The unpredictable order of computation of subexpressions also makes a
difference when one of them contains an assignment. We already saw this
example of bad code,

x = 20;
printf ("%d %d\n", x, x = 4);

in which the second argument, x, has a different value depending on whether
it is computed before or after the assignment in the third argument.

10.2 Associativity and Ordering
An associative binary operator, such as +, when used repeatedly can combine
any number of operands. The operands’ values may be computed in any
order.

If the values are integers and overflow can be ignored, they may be com-
bined in any order. Thus, given four functions that return unsigned int,
calling them and adding their results as here

(foo () + bar ()) + (baz () + quux ())

may add up the results in any order.

By contrast, arithmetic on signed integers, with overflow significant, is
not really associative (see Section 6.3 [Integer Overflow], page 25). Thus,
the additions must be done in the order specified, obeying parentheses and
left-association. That means computing (foo () + bar ()) and (baz () +
quux ()) first (in either order), then adding the two.

The same applies to arithmetic on floating-point values, since that
too is not really associative. However, the GCC option -funsafe-math-
optimizations allows the compiler to change the order of calculation when
an associative operation (associative in exact mathematics) combines several
operands. The option takes effect when compiling a module (see Chapter 29
[Compilation], page 229). Changing the order of association can enable the
program to pipeline the floating point operations.

In all these cases, the four function calls can be done in any order. There
is no right or wrong about that.

Chapter 10: Order of Execution 47

10.3 Sequence Points
There are some points in the code where C makes limited guarantees about
the order of operations. These are called sequence points. Here is where
they occur:

• At the end of a full expression; that is to say, an expression that is not
part of a larger expression. All side effects specified by that expression
are carried out before execution moves on to subsequent code.

• At the end of the first operand of certain operators: ‘,’, ‘&&’, ‘||’, and
‘?:’. All side effects specified by that expression are carried out before
any execution of the next operand.

The commas that separate arguments in a function call are not comma
operators, and they do not create sequence points. The rule for func-
tion arguments and the rule for operands are different (see Section 10.5
[Ordering of Operands], page 48).

• Just before calling a function. All side effects specified by the argument
expressions are carried out before calling the function.

If the function to be called is not constant—that is, if it is computed by
an expression—all side effects in that expression are carried out before
calling the function.

The ordering imposed by a sequence point applies locally to a limited
range of code, as stated above in each case. For instance, the ordering
imposed by the comma operator does not apply to code outside that comma
operator. Thus, in this code,

(x = 5, foo (x)) + x * x

the sequence point of the comma operator orders x = 5 before foo (x), but
x * x could be computed before or after them.

10.4 Postincrement and Ordering
Ordering requirements are loose with the postincrement and postdecrement
operations (see Section 7.5 [Postincrement/Postdecrement], page 36), which
specify side effects to happen “a little later.” They must happen before the
next sequence point, but that still leaves room for various meanings. In this
expression,

z = x++ - foo ()

it’s unpredictable whether x gets incremented before or after calling the
function foo. If foo refers to x, it might see the old value or it might see
the incremented value.

In this perverse expression,

x = x++

x will certainly be incremented but the incremented value may not stick. If
the incrementation of x happens after the assignment to x, the incremented
value will remain in place. But if the incrementation happens first, the

Chapter 10: Order of Execution 48

assignment will overwrite that with the not-yet-incremented value, so the
expression as a whole will leave x unchanged.

10.5 Ordering of Operands
Operands and arguments can be computed in any order, but there are limits
to this intermixing in GNU C:

• The operands of a binary arithmetic operator can be computed in either
order, but they can’t be intermixed: one of them has to come first,
followed by the other. Any side effects in the operand that’s computed
first are executed before the other operand is computed.

• That applies to assignment operators too, except that in simple assign-
ment the previous value of the left operand is unused.

• The arguments in a function call can be computed in any order, but
they can’t be intermixed. Thus, one argument is fully computed, then
another, and so on until they are all done. Any side effects in one
argument are executed before computation of another argument begins.

These rules don’t cover side effects caused by postincrement and post-
decrement operators—those can be deferred up to the next sequence point.

If you want to get pedantic, the fact is that GCC can reorder the compu-
tations in many other ways provided that doesn’t alter the result of running
the program. However, because they don’t alter the result of running the
program, they are negligible, unless you are concerned with the values in cer-
tain variables at various times as seen by other processes. In those cases, you
can use volatile to prevent optimizations that would make them behave
strangely. See Section 21.2 [volatile], page 137.

10.6 Optimization and Ordering
Sequence points limit the compiler’s freedom to reorder operations arbitrar-
ily, but optimizations can still reorder them if the compiler concludes that
this won’t alter the results. Thus, in this code,

x++;
y = z;
x++;

there is a sequence point after each statement, so the code is supposed to
increment x once before the assignment to y and once after. However, incre-
menting x has no effect on y or z, and setting y can’t affect x, so the code
could be optimized into this:

y = z;
x += 2;

Normally that has no effect except to make the program faster. But
there are special situations where it can cause trouble due to things that the
compiler cannot know about, such as shared memory. To limit optimization

Chapter 10: Order of Execution 49

in those places, use the volatile type qualifier (see Section 21.2 [volatile],
page 137).

50

11 Primitive Data Types

This chapter describes all the primitive data types of C—that is, all the data
types that aren’t built up from other types. They include the types int and
double that we’ve already covered.

These types are all made up of bytes (see Chapter 3 [Storage], page 13).

11.1 Integer Data Types
Here we describe all the integer types and their basic characteristics. See
Chapter 27 [Integers in Depth], page 206, for more information about the
bit-level integer data representations and arithmetic.

11.1.1 Basic Integers

Integer data types in C can be signed or unsigned. An unsigned type can
represent only positive numbers and zero. A signed type can represent both
positive and negative numbers, in a range spread almost equally on both
sides of zero.

Aside from signedness, the integer data types vary in size: how many
bytes long they are. The size determines how many different integer values
the type can hold.

Here’s a list of the signed integer data types, with the sizes they have on
most computers. Each has a corresponding unsigned type; see Section 11.1.2
[Signed and Unsigned Types], page 51.

signed char
One byte (8 bits). This integer type is used mainly for inte-
gers that represent characters, as part of arrays or other data
structures.

short
short int Two bytes (16 bits).

int Four bytes (32 bits).

long
long int Four bytes (32 bits) or eight bytes (64 bits), depending on the

platform. Typically it is 32 bits on 32-bit computers and 64 bits
on 64-bit computers, but there are exceptions.

long long
long long int

Eight bytes (64 bits). Supported in GNU C in the 1980s, and
incorporated into standard C as of ISO C99.

You can omit int when you use long or short. This is harmless and
customary.

Chapter 11: Primitive Data Types 51

11.1.2 Signed and Unsigned Types

An unsigned integer type can represent only positive numbers and zero. A
signed type can represent both positive and negative number, in a range
spread almost equally on both sides of zero. For instance, unsigned char
holds numbers from 0 to 255 (on most computers), while signed char holds
numbers from −128 to 127. Each of these types holds 256 different possible
values, since they are both 8 bits wide.

Write signed or unsigned before the type keyword to specify a signed
or an unsigned type. However, the integer types other than char are signed
by default; with them, signed is a no-op.

Plain char may be signed or unsigned; this depends on the compiler, the
machine in use, and its operating system.

In many programs, it makes no difference whether char is signed. When
it does matter, don’t leave it to chance; write signed char or unsigned
char.1

11.1.3 Narrow Integers

The types that are narrower than int are rarely used for ordinary variables—
we declare them int instead. This is because C converts those narrower
types to int for any arithmetic. There is literally no reason to declare a
local variable char, for instance.

In particular, if the value is really a character, you should declare the
variable int. Not char! Using that narrow type can force the compiler
to truncate values for conversion, which is a waste. Furthermore, some
functions return either a character value, or −1 for “no character.” Using
int keeps those values distinct.

The narrow integer types are useful as parts of other objects, such as
arrays and structures. Compare these array declarations, whose sizes on
32-bit processors are shown:

signed char ac[1000]; /* 1000 bytes */
short as[1000]; /* 2000 bytes */
int ai[1000]; /* 4000 bytes */
long long all[1000]; /* 8000 bytes */

In addition, character strings must be made up of chars, because that’s
what all the standard library string functions expect. Thus, array ac could
be used as a character string, but the others could not be.

1 Personal note from Richard Stallman: Eating with hackers at a fish restaurant, I
ordered Arctic Char. When my meal arrived, I noted that the chef had not signed it.
So I complained, “This char is unsigned—I wanted a signed char!” Or rather, I would
have said this if I had thought of it fast enough.

Chapter 11: Primitive Data Types 52

11.1.4 Conversion among Integer Types

C converts between integer types implicitly in many situations. It converts
the narrow integer types, char and short, to int whenever they are used
in arithmetic. Assigning a new value to an integer variable (or other lvalue)
converts the value to the variable’s type.

You can also convert one integer type to another explicitly with a cast
operator. See Section 24.1 [Explicit Type Conversion], page 165.

The process of conversion to a wider type is straightforward: the value
is unchanged. The only exception is when converting a negative value (in
a signed type, obviously) to a wider unsigned type. In that case, the result
is a positive value with the same bits (see Chapter 27 [Integers in Depth],
page 206).

Converting to a narrower type, also called truncation, involves discard-
ing some of the value’s bits. This is not considered overflow (see Section 6.3
[Integer Overflow], page 25) because loss of significant bits is a normal conse-
quence of truncation. Likewise for conversion between signed and unsigned
types of the same width.

More information about conversion for assignment is in Section 24.2 [As-
signment Type Conversions], page 165. For conversion for arithmetic, see
Section 24.3 [Argument Promotions], page 166.

11.1.5 Boolean Type

The unsigned integer type bool holds truth values: its possible values are 0
and 1. Converting any nonzero value to bool results in 1. For example:

bool a = 0;
bool b = 1;
bool c = 4; /* Stores the value 1 in c. */

Unlike int, bool is not a keyword. It is defined in the header file
stdbool.h.

11.1.6 Integer Variations

The integer types of C have standard names, but what they mean varies
depending on the kind of platform in use: which kind of computer, which
operating system, and which compiler. It may even depend on the compiler
options used.

Plain char may be signed or unsigned; this depends on the platform, too.
Even for GNU C, there is no general rule.

In theory, all of the integer types’ sizes can vary. char is always considered
one “byte” for C, but it is not necessarily an 8-bit byte; on some platforms
it may be more than 8 bits. ISO C specifies only that none of these types is
narrower than the ones above it in the list in Section 11.1.1 [Basic Integers],
page 50, and that short has at least 16 bits.

Chapter 11: Primitive Data Types 53

It is possible that in the future GNU C will support platforms where int
is 64 bits long. In practice, however, on today’s real computers, there is
little variation; you can rely on the table given previously (see Section 11.1.1
[Basic Integers], page 50).

To be completely sure of the size of an integer type, use the types int16_
t, int32_t and int64_t. Their corresponding unsigned types add ‘u’ at the
front. To define these, include the header file stdint.h.

The GNU C Compiler compiles for some embedded controllers that use
two bytes for int. On some, int is just one “byte,” and so is short int—
but that “byte” may contain 16 bits or even 32 bits. These processors can’t
support an ordinary operating system (they may have their own specialized
operating systems), and most C programs do not try to support them.

11.2 Floating-Point Data Types
Floating point is the binary analogue of scientific notation: internally it
represents a number as a fraction and a binary exponent; the value is that
fraction multiplied by the specified power of 2.

For instance, to represent 6, the fraction would be 0.75 and the exponent
would be 3; together they stand for the value 0.75 ∗ 23, meaning 0.75 * 8.
The value 1.5 would use 0.75 as the fraction and 1 as the exponent. The
value 0.75 would use 0.75 as the fraction and 0 as the exponent. The value
0.375 would use 0.75 as the fraction and -1 as the exponent.

These binary exponents are used by machine instructions. You can write
a floating-point constant this way if you wish, using hexadecimal; but nor-
mally we write floating-point numbers in decimal. See Section 12.3 [Floating
Constants], page 58.

C has three floating-point data types:

double “Double-precision” floating point, which uses 64 bits. This is the
normal floating-point type, and modern computers normally do
their floating-point computations in this type, or some wider
type. Except when there is a special reason to do otherwise,
this is the type to use for floating-point values.

float “Single-precision” floating point, which uses 32 bits. It is useful
for floating-point values stored in structures and arrays, to save
space when the full precision of double is not needed. In ad-
dition, single-precision arithmetic is faster on some computers,
and occasionally that is useful. But not often—most programs
don’t use the type float.

C would be cleaner if float were the name of the type we use
for most floating-point values; however, for historical reasons,
that’s not so.

Chapter 11: Primitive Data Types 54

long double
“Extended-precision” floating point is either 80-bit or 128-bit
precision, depending on the machine in use. On some machines,
which have no floating-point format wider than double, this is
equivalent to double.

Floating-point arithmetic raises many subtle issues. See Chapter 28
[Floating Point in Depth], page 208, for more information.

11.3 Complex Data Types
Complex numbers can include both a real part and an imaginary part. The
numeric constants covered above have real-numbered values. An imaginary-
valued constant is an ordinary real-valued constant followed by ‘i’.

To declare numeric variables as complex, use the _Complex keyword.2

The standard C complex data types are floating point,

_Complex float foo;
_Complex double bar;
_Complex long double quux;

but GNU C supports integer complex types as well.

Since _Complex is a keyword just like float and double and long, the
keywords can appear in any order, but the order shown above seems most
logical.

GNU C supports constants for complex values; for instance, 4.0 + 3.0i
has the value 4 + 3i as type _Complex double. See Section 12.4 [Imaginary
Constants], page 59.

To pull the real and imaginary parts of the number back out, GNU C
provides the keywords __real__ and __imag__:

_Complex double foo = 4.0 + 3.0i;

double a = __real__ foo; /* a is now 4.0. */
double b = __imag__ foo; /* b is now 3.0. */

Standard C does not include these keywords, and instead relies on functions
defined in complex.h for accessing the real and imaginary parts of a complex
number: crealf, creal, and creall extract the real part of a float, double,
or long double complex number, respectively; cimagf, cimag, and cimagl
extract the imaginary part.

GNU C also defines ‘~’ as an operator for complex conjugation, which
means negating the imaginary part of a complex number:

_Complex double foo = 4.0 + 3.0i;
_Complex double bar = ~foo; /* bar is now 4 − 3i. */

2 For compatibility with older versions of GNU C, the keyword __complex__ is also
allowed. Going forward, however, use the new _Complex keyword as defined in ISO
C11.

Chapter 11: Primitive Data Types 55

For standard C compatibility, you can use the appropriate library function:
conjf, conj, or confl.

11.4 The Void Type
The data type void is a dummy—it allows no operations. It really means
“no value at all.” When a function is meant to return no value, we write
void for its return type. Then return statements in that function should
not specify a value (see Section 19.5 [return Statement], page 111). Here’s
an example:

void
print_if_positive (double x, double y)
{

if (x <= 0)
return;

if (y <= 0)
return;

printf ("Next point is (%f,%f)\n", x, y);
}

A void-returning function is comparable to what some other languages
call a “procedure” instead of a “function.”

11.5 Other Data Types
Beyond the primitive types, C provides several ways to construct new data
types. For instance, you can define pointers, values that represent the ad-
dresses of other data (see Chapter 14 [Pointers], page 68). You can define
structures, as in many other languages (see Chapter 15 [Structures], page 80),
and unions, which specify multiple ways to look at the same memory space
(see Section 15.13 [Unions], page 89). Enumerations are collections of named
integer codes (see Chapter 17 [Enumeration Types], page 105).

Array types in C are used for allocating space for objects, but C does
not permit operating on an array value as a whole. See Chapter 16 [Arrays],
page 97.

11.6 Type Designators
Some C constructs require a way to designate a specific data type indepen-
dent of any particular variable or expression which has that type. The way
to do this is with a type designator. The constucts that need one include
casts (see Section 24.1 [Explicit Type Conversion], page 165) and sizeof
(see Chapter 13 [Type Size], page 66).

We also use type designators to talk about the type of a value in C, so
you will see many type designators in this manual. When we say, “The value
has type int,” int is a type designator.

Chapter 11: Primitive Data Types 56

To make the designator for any type, imagine a variable declaration for
a variable of that type and delete the variable name and the final semicolon.

For example, to designate the type of full-word integers, we start with
the declaration for a variable foo with that type, which is this:

int foo;

Then we delete the variable name foo and the semicolon, leaving int—
exactly the keyword used in such a declaration. Therefore, the type desig-
nator for this type is int.

What about long unsigned integers? From the declaration

unsigned long int foo;

we determine that the designator is unsigned long int.

Following this procedure, the designator for any primitive type is simply
the set of keywords which specifies that type in a declaration. The same is
true for compound types such as structures, unions, and enumerations.

Designators for pointer types do follow the rule of deleting the variable
name and semicolon, but the result is not so simple. See Section 14.4 [Pointer
Type Designators], page 69, as part of the chapter about pointers. See
Section 16.4 [Array Type Designators], page 100), for designators for array
types.

To understand what type a designator stands for, imagine a variable
name inserted into the right place in the designator to make a valid decla-
ration. What type would that variable be declared as? That is the type the
designator designates.

57

12 Constants

A constant is an expression that stands for a specific value by explicitly
representing the desired value. C allows constants for numbers, characters,
and strings. We have already seen numeric and string constants in the
examples.

12.1 Integer Constants
An integer constant consists of a number to specify the value, followed op-
tionally by suffix letters to specify the data type.

The simplest integer constants are numbers written in base 10 (decimal),
such as 5, 77, and 403. A decimal constant cannot start with the character
‘0’ (zero) because that makes the constant octal.

You can get the effect of a negative integer constant by putting a mi-
nus sign at the beginning. Grammatically speaking, that is an arithmetic
expression rather than a constant, but it behaves just like a true constant.

Integer constants can also be written in octal (base 8), hexadecimal (base
16), or binary (base 2). An octal constant starts with the character ‘0’ (zero),
followed by any number of octal digits (‘0’ to ‘7’):

0 // zero
077 // 63
0403 // 259

Pedantically speaking, the constant 0 is an octal constant, but we can think
of it as decimal; it has the same value either way.

A hexadecimal constant starts with ‘0x’ (upper or lower case) followed
by hex digits (‘0’ to ‘9’, as well as ‘a’ through ‘f’ in upper or lower case):

0xff // 255
0XA0 // 160
0xffFF // 65535

A binary constant starts with ‘0b’ (upper or lower case) followed by bits
(each represented by the characters ‘0’ or ‘1’):

0b101 // 5

Binary constants are a GNU C extension, not part of the C standard.

Sometimes a space is needed after an integer constant to avoid lexical
confusion with the following tokens. See Section 12.5 [Invalid Numbers],
page 60.

12.2 Integer Constant Data Types
The type of an integer constant is normally int, if the value fits in that type,
but here are the complete rules. The type of an integer constant is the first
one in this sequence that can properly represent the value,

1. int

Chapter 12: Constants 58

2. unsigned int

3. long int

4. unsigned long int

5. long long int

6. unsigned long long int

and that isn’t excluded by the following rules.

If the constant has ‘l’ or ‘L’ as a suffix, that excludes the first two types
(non-long).

If the constant has ‘ll’ or ‘LL’ as a suffix, that excludes first four types
(non-long long).

If the constant has ‘u’ or ‘U’ as a suffix, that excludes the signed types.

Otherwise, if the constant is decimal, that excludes the unsigned types.

Here are some examples of the suffixes.

3000000000u // three billion as unsigned int.
0LL // zero as a long long int.
0403l // 259 as a long int.

Suffixes in integer constants are rarely used. When the precise type is
important, it is cleaner to convert explicitly (see Section 24.1 [Explicit Type
Conversion], page 165).

See Section 11.1 [Integer Types], page 50.

12.3 Floating-Point Constants
A floating-point constant must have either a decimal point, an exponent-of-
ten, or both; they distinguish it from an integer constant.

To indicate an exponent, write ‘e’ or ‘E’. The exponent value follows. It
is always written as a decimal number; it can optionally start with a sign.
The exponent n means to multiply the constant’s value by ten to the nth
power.

Thus, ‘1500.0’, ‘15e2’, ‘15e+2’, ‘15.0e2’, ‘1.5e+3’, ‘.15e4’, and
‘15000e-1’ are six ways of writing a floating-point number whose value is
1500. They are all equivalent.

Here are more examples with decimal points:

1.0
1000.
3.14159
.05
.0005

For each of them, here are some equivalent constants written with expo-
nents:

1e0, 1.0000e0
100e1, 100e+1, 100E+1, 1e3, 10000e-1

Chapter 12: Constants 59

3.14159e0
5e-2, .0005e+2, 5E-2, .0005E2
.05e-2

A floating-point constant normally has type double. You can force it to
type float by adding ‘f’ or ‘F’ at the end. For example,

3.14159f
3.14159e0f
1000.f
100E1F
.0005f
.05e-2f

Likewise, ‘l’ or ‘L’ at the end forces the constant to type long double.

You can use exponents in hexadecimal floating constants, but since ‘e’
would be interpreted as a hexadecimal digit, the character ‘p’ or ‘P’ (for
“power”) indicates an exponent.

The exponent in a hexadecimal floating constant is a possibly-signed dec-
imal integer that specifies a power of 2 (not 10 or 16) to multiply into the
number.

Here are some examples:

0xAp2 // 40 in decimal
0xAp-1 // 5 in decimal
0x2.0Bp4 // 16.75 decimal
0xE.2p3 // 121 decimal
0x123.ABCp0 // 291.6708984375 in decimal
0x123.ABCp4 // 4666.734375 in decimal
0x100p-8 // 1
0x10p-4 // 1
0x1p+4 // 16
0x1p+8 // 256

See Section 11.2 [Floating-Point Data Types], page 53.

12.4 Imaginary Constants
A complex number consists of a real part plus an imaginary part. (Either
or both parts may be zero.) This section explains how to write numeric
constants with imaginary values. By adding these to ordinary real-valued
numeric constants, we can make constants with complex values.

The simple way to write an imaginary-number constant is to attach the
suffix ‘i’ or ‘I’, or ‘j’ or ‘J’, to an integer or floating-point constant. For
example, 2.5fi has type _Complex float and 3i has type _Complex int.
The four alternative suffix letters are all equivalent.

The other way to write an imaginary constant is to multiply a real con-
stant by _Complex_I, which represents the imaginary number i. Standard
C doesn’t support suffixing with ‘i’ or ‘j’, so this clunky way is needed.

Chapter 12: Constants 60

To write a complex constant with a nonzero real part and a nonzero
imaginary part, write the two separately and add them, like this:

4.0 + 3.0i

That gives the value 4 + 3i, with type _Complex double.

Such a sum can include multiple real constants, or none. Likewise, it can
include multiple imaginary constants, or none. For example:

_Complex double foo, bar, quux;

foo = 2.0i + 4.0 + 3.0i; /* Imaginary part is 5.0. */
bar = 4.0 + 12.0; /* Imaginary part is 0.0. */
quux = 3.0i + 15.0i; /* Real part is 0.0. */

See Section 11.3 [Complex Data Types], page 54.

12.5 Invalid Numbers
Some number-like constructs which are not really valid as numeric constants
are treated as numbers in preprocessing directives. If these constructs appear
outside of preprocessing, they are erroneous. See Section 26.3 [Preprocessing
Tokens], page 172.

Sometimes we need to insert spaces to separate tokens so that they won’t
be combined into a single number-like construct. For example, 0xE+12 is a
preprocessing number that is not a valid numeric constant, so it is a syntax
error. If what we want is the three tokens 0xE + 12, we have to use those
spaces as separators.

12.6 Character Constants
A character constant is written with single quotes, as in ’c’. In the simplest
case, c is a single ASCII character that the constant should represent. The
constant has type int, and its value is the character code of that character.
For instance, ’a’ represents the character code for the letter ‘a’: 97, that is.

To put the ‘’’ character (single quote) in the character constant, quote
it with a backslash (‘\’). This character constant looks like ’\’’. This sort
of sequence, starting with ‘\’, is called an escape sequence—the backslash
character here functions as a kind of escape character.

To put the ‘\’ character (backslash) in the character constant, quote it
likewise with ‘\’ (another backslash). This character constant looks like
’\\’.

Here are all the escape sequences that represent specific characters in a
character constant. The numeric values shown are the corresponding ASCII
character codes, as decimal numbers.

’\a’ ⇒ 7 /* alarm, CTRL-g */
’\b’ ⇒ 8 /* backspace, BS, CTRL-h */
’\t’ ⇒ 9 /* tab, TAB, CTRL-i */

Chapter 12: Constants 61

’\n’ ⇒ 10 /* newline, CTRL-j */
’\v’ ⇒ 11 /* vertical tab, CTRL-k */
’\f’ ⇒ 12 /* formfeed, CTRL-l */
’\r’ ⇒ 13 /* carriage return, RET, CTRL-m */
’\e’ ⇒ 27 /* escape character, ESC, CTRL-[*/
’\\’ ⇒ 92 /* backslash character, \ */
’\’’ ⇒ 39 /* singlequote character, ’ */
’\"’ ⇒ 34 /* doublequote character, " */
’\?’ ⇒ 63 /* question mark, ? */

‘\e’ is a GNU C extension; to stick to standard C, write ‘\33’.

You can also write octal and hex character codes as ‘\octalcode’ or
‘\xhexcode’. Decimal is not an option here, so octal codes do not need to
start with ‘0’.

The character constant’s value has type int. However, the character code
is treated initially as a char value, which is then converted to int. If the
character code is greater than 127 (0177 in octal), the resulting int may be
negative on a platform where the type char is 8 bits long and signed.

12.7 String Constants
A string constant represents a series of characters. It starts with ‘"’ and ends
with ‘"’; in between are the contents of the string. Quoting special characters
such as ‘"’, ‘\’ and newline in the contents works in string constants as in
character constants. In a string constant, ‘’’ does not need to be quoted.

A string constant defines an array of characters which contains the spec-
ified characters followed by the null character (code 0). Using the string
constant is equivalent to using the name of an array with those contents. In
simple cases, the length in bytes of the string constant is one greater than
the number of characters written in it.

As with any array in C, using the string constant in an expression converts
the array to a pointer (see Chapter 14 [Pointers], page 68) to the array’s first
element (see Section 16.1 [Accessing Array Elements], page 97). This pointer
will have type char * because it points to an element of type char. char * is
an example of a type designator for a pointer type (see Section 14.4 [Pointer
Type Designators], page 69). That type is used for strings generally, not
just the strings expressed as constants in a program.

Thus, the string constant "Foo!" is almost equivalent to declaring an
array like this

char string_array_1[] = {’F’, ’o’, ’o’, ’!’, ’\0’ };

and then using string_array_1 in the program. There are two differences,
however:

• The string constant doesn’t define a name for the array.

• The string constant is probably stored in a read-only area of memory.

Chapter 12: Constants 62

Newlines are not allowed in the text of a string constant. The motive for
this prohibition is to catch the error of omitting the closing ‘"’. To put a
newline in a constant string, write it as ‘\n’ in the string constant.

A real null character in the source code inside a string constant causes a
warning. To put a null character in the middle of a string constant, write
‘\0’ or ‘\000’.

Consecutive string constants are effectively concatenated. Thus,

"Fo" "o!" is equivalent to "Foo!"

This is useful for writing a string containing multiple lines, like this:

"This message is so long that it needs more than\n"
"a single line of text. C does not allow a newline\n"
"to represent itself in a string constant, so we have to\n"
"write \\n to put it in the string. For readability of\n"
"the source code, it is advisable to put line breaks in\n"
"the source where they occur in the contents of the\n"
"constant.\n"

The sequence of a backslash and a newline is ignored anywhere in a C
program, and that includes inside a string constant. Thus, you can write
multi-line string constants this way:

"This is another way to put newlines in a string constant\n\
and break the line after them in the source code."

However, concatenation is the recommended way to do this.

You can also write perverse string constants like this,

"Fo\
o!"

but don’t do that—write it like this instead:

"Foo!"

Be careful to avoid passing a string constant to a function that modifies
the string it receives. The memory where the string constant is stored may be
read-only, which would cause a fatal SIGSEGV signal that normally terminates
the function (see Appendix E [Signals], page 245. Even worse, the memory
may not be read-only. Then the function might modify the string constant,
thus spoiling the contents of other string constants that are supposed to
contain the same value and are unified by the compiler.

12.8 UTF-8 String Constants
Writing ‘u8’ immediately before a string constant, with no intervening space,
means to represent that string in UTF-8 encoding as a sequence of bytes.
UTF-8 represents ASCII characters with a single byte, and represents non-
ASCII Unicode characters (codes 128 and up) as multibyte sequences. Here
is an example of a UTF-8 constant:

u8"A cónstà~nt"

Chapter 12: Constants 63

This constant occupies 13 bytes plus the terminating null, because each
of the accented letters is a two-byte sequence.

Concatenating an ordinary string with a UTF-8 string conceptually pro-
duces another UTF-8 string. However, if the ordinary string contains char-
acter codes 128 and up, the results cannot be relied on.

12.9 Unicode Character Codes
You can specify Unicode characters, for individual character constants or as
part of string constants (see Section 12.7 [String Constants], page 61), using
escape sequences. Use the ‘\u’ escape sequence with a 16-bit hexadecimal
Unicode character code. If the code value is too big for 16 bits, use the ‘\U’
escape sequence with a 32-bit hexadecimal Unicode character code. (These
codes are called universal character names.) For example,

\u6C34 /* 16-bit code (UTF-16) */
\U0010ABCD /* 32-bit code (UTF-32) */

One way to use these is in UTF-8 string constants (see Section 12.8 [UTF-8
String Constants], page 62). For instance,

u8"fóó \u6C34 \U0010ABCD"

You can also use them in wide character constants (see Section 12.10
[Wide Character Constants], page 63), like this:

u’\u6C34’ /* 16-bit code */
U’\U0010ABCD’ /* 32-bit code */

and in wide string constants (see Section 12.11 [Wide String Constants],
page 64), like this:

u"\u6C34\u6C33" /* 16-bit code */
U"\U0010ABCD" /* 32-bit code */

Codes in the range of D800 through DFFF are not valid in Unicode.
Codes less than 00A0 are also forbidden, except for 0024, 0040, and 0060;
these characters are actually ASCII control characters, and you can specify
them with other escape sequences (see Section 12.6 [Character Constants],
page 60).

12.10 Wide Character Constants
A wide character constant represents characters with more than 8 bits of
character code. This is an obscure feature that we need to document but
that you probably won’t ever use. If you’re just learning C, you may as well
skip this section.

The original C wide character constant looks like ‘L’ (upper case!) fol-
lowed immediately by an ordinary character constant (with no intervening
space). Its data type is wchar_t, which is an alias defined in stddef.h for
one of the standard integer types. Depending on the platform, it could be
16 bits or 32 bits. If it is 16 bits, these character constants use the UTF-16
form of Unicode; if 32 bits, UTF-32.

Chapter 12: Constants 64

There are also Unicode wide character constants which explicitly specify
the width. These constants start with ‘u’ or ‘U’ instead of ‘L’. ‘u’ specifies
a 16-bit Unicode wide character constant, and ‘U’ a 32-bit Unicode wide
character constant. Their types are, respectively, char16_t and char32_t;
they are declared in the header file uchar.h. These character constants
are valid even if uchar.h is not included, but some uses of them may be
inconvenient without including it to declare those type names.

The character represented in a wide character constant can be an ordinary
ASCII character. L’a’, u’a’ and U’a’ are all valid, and they are all equal
to ’a’.

In all three kinds of wide character constants, you can write a non-ASCII
Unicode character in the constant itself; the constant’s value is the charac-
ter’s Unicode character code. Or you can specify the Unicode character with
an escape sequence (see Section 12.9 [Unicode Character Codes], page 63).

12.11 Wide String Constants
A wide string constant stands for an array of 16-bit or 32-bit characters.
They are rarely used; if you’re just learning C, you may as well skip this
section.

There are three kinds of wide string constants, which differ in the data
type used for each character in the string. Each wide string constant is
equivalent to an array of integers, but the data type of those integers depends
on the kind of wide string. Using the constant in an expression will convert
the array to a pointer to its first element, as usual for arrays in C (see
Section 16.1 [Accessing Array Elements], page 97). For each kind of wide
string constant, we state here what type that pointer will be.

char16_t This is a 16-bit Unicode wide string constant: each element is a
16-bit Unicode character code with type char16_t, so the string
has the pointer type char16_t *. (That is a type designator; see
Section 14.4 [Pointer Type Designators], page 69.) The constant
is written as ‘u’ (which must be lower case) followed (with no
intervening space) by a string constant with the usual syntax.

char32_t This is a 32-bit Unicode wide string constant: each element is a
32-bit Unicode character code, and the string has type char32_t
*. It’s written as ‘U’ (which must be upper case) followed (with
no intervening space) by a string constant with the usual syntax.

wchar_t This is the original kind of wide string constant. It’s written
as ‘L’ (which must be upper case) followed (with no intervening
space) by a string constant with the usual syntax, and the string
has type wchar_t *.

The width of the data type wchar_t depends on the target plat-
form, which makes this kind of wide string somewhat less useful
than the newer kinds.

65

char16_t and char32_t are declared in the header file uchar.h. wchar_t
is declared in stddef.h.

Consecutive wide string constants of the same kind concatenate, just like
ordinary string constants. A wide string constant concatenated with an ordi-
nary string constant results in a wide string constant. You can’t concatenate
two wide string constants of different kinds. You also can’t concatenate a
wide string constant (of any kind) with a UTF-8 string constant.

66

13 Type Size

Each data type has a size, which is the number of bytes (see Chapter 3
[Storage], page 13) that it occupies in memory. To refer to the size in a C
program, use sizeof. There are two ways to use it:

sizeof expression
This gives the size of expression, based on its data type. It
does not calculate the value of expression, only its size, so if
expression includes side effects or function calls, they do not
happen. Therefore, sizeof is always a compile-time operation
that has zero run-time cost.

A value that is a bit field (see Section 15.6 [Bit Fields], page 85)
is not allowed as an operand of sizeof.

For example,

double a;

i = sizeof a + 10;

sets i to 18 on most computers because a occupies 8 bytes.

Here’s how to determine the number of elements in an array
array:

(sizeof array / sizeof array[0])

The expression sizeof array gives the size of the array, not
the size of a pointer to an element. However, if expression is
a function parameter that was declared as an array, that vari-
able really has a pointer type (see Section 22.1.4.1 [Array Parm
Pointer], page 143), so the result is the size of that pointer.

sizeof (type)
This gives the size of type. For example,

i = sizeof (double) + 10;

is equivalent to the previous example.

You can’t apply sizeof to an incomplete type (see Section 15.18
[Incomplete Types], page 93), nor void. Using it on a func-
tion type gives 1 in GNU C, which makes adding an integer to
a function pointer work as desired (see Section 14.10 [Pointer
Arithmetic], page 73).

Warning: When you use sizeof with a type instead of an expression,
you must write parentheses around the type.

Warning: When applying sizeof to the result of a cast (see Section 24.1
[Explicit Type Conversion], page 165), you must write parentheses around
the cast expression to avoid an ambiguity in the grammar of C. Specifically,

sizeof (int) -x

Chapter 13: Type Size 67

parses as

(sizeof (int)) - x

If what you want is

sizeof ((int) -x)

you must write it that way, with parentheses.

The data type of the value of the sizeof operator is always one of the
unsigned integer types; which one of those types depends on the machine.
The header file stddef.h defines the typedef name size_t as an alias for
this type. See Chapter 18 [Defining Typedef Names], page 107.

68

14 Pointers

Among high-level languages, C is rather low level, close to the machine. This
is mainly because it has explicit pointers. A pointer value is the numeric
address of data in memory. The type of data to be found at that address is
specified by the data type of the pointer itself. The unary operator ‘*’ gets
the data that a pointer points to—this is called dereferencing the pointer.

C also allows pointers to functions, but since there are some differences
in how they work, we treat them later. See Section 22.5 [Function Pointers],
page 149.

14.1 Address of Data
The most basic way to make a pointer is with the “address-of” operator, ‘&’.
Let’s suppose we have these variables available:

int i;
double a[5];

Now, &i gives the address of the variable i—a pointer value that points
to i’s location—and &a[3] gives the address of the element 3 of a. (It is
actually the fourth element in the array, since the first element has index 0.)

The address-of operator is unusual because it operates on a place to
store a value (an lvalue, see Section 7.2 [Lvalues], page 34), not on the
value currently stored there. (The left argument of a simple assignment is
unusual in the same way.) You can use it on any lvalue except a bit field
(see Section 15.6 [Bit Fields], page 85) or a constructor (see Section 15.16
[Structure Constructors], page 92).

14.2 Pointer Types
For each data type t, there is a type for pointers to type t. For these variables,

int i;
double a[5];

• i has type int; we say &i is a “pointer to int.”

• a has type double[5]; we say &a is a “pointer to arrays of five doubles.”

• a[3] has type double; we say &a[3] is a “pointer to double.”

14.3 Pointer-Variable Declarations
The way to declare that a variable foo points to type t is

t *foo;

To remember this syntax, think “if you dereference foo, using the ‘*’
operator, what you get is type t. Thus, foo points to type t.”

Thus, we can declare variables that hold pointers to these three types,
like this:

int *ptri; /* Pointer to int. */

Chapter 14: Pointers 69

double *ptrd; /* Pointer to double. */
double (*ptrda)[5]; /* Pointer to double[5]. */

‘int *ptri;’ means, “if you dereference ptri, you get an int.” ‘double
(*ptrda)[5];’ means, “if you dereference ptrda, then subscript it by an
integer less than 5, you get a double.” The parentheses express the point
that you would dereference it first, then subscript it.

Contrast the last one with this:

double *aptrd[5]; /* Array of five pointers to double. */

Because ‘*’ has higher syntactic precedence than subscripting, you would
subscript aptrd then dereference it. Therefore, it declares an array of point-
ers, not a pointer.

14.4 Pointer-Type Designators
Every type in C has a designator; you make it by deleting the variable name
and the semicolon from a declaration (see Section 11.6 [Type Designators],
page 55). Here are the designators for the pointer types of the example
declarations in the previous section:

int * /* Pointer to int. */
double * /* Pointer to double. */
double (*)[5] /* Pointer to double[5]. */

Remember, to understand what type a designator stands for, imagine the
variable name that would be in the declaration, and figure out what type
it would declare that variable with. double (*)[5] can only come from
double (*variable)[5], so it’s a pointer which, when dereferenced, gives
an array of 5 doubles.

14.5 Dereferencing Pointers
The main use of a pointer value is to dereference it (access the data it
points at) with the unary ‘*’ operator. For instance, *&i is the value at i’s
address—which is just i. The two expressions are equivalent, provided &i is
valid.

A pointer-dereference expression whose type is data (not a function) is
an lvalue.

Pointers become really useful when we store them somewhere and use
them later. Here’s a simple example to illustrate the practice:

{
int i;
int *ptr;

ptr = &i;

i = 5;

Chapter 14: Pointers 70

. . .

return *ptr; /* Returns 5, fetched from i. */
}

This shows how to declare the variable ptr as type int * (pointer to
int), store a pointer value into it (pointing at i), and use it later to get the
value of the object it points at (the value in i).

If anyone can provide a useful example which is this basic, I would be
grateful.

14.6 Null Pointers
A pointer value can be null, which means it does not point to any object.
The cleanest way to get a null pointer is by writing NULL, a standard macro
defined in stddef.h. You can also do it by casting 0 to the desired pointer
type, as in (char *) 0. (The cast operator performs explicit type conversion;
See Section 24.1 [Explicit Type Conversion], page 165.)

You can store a null pointer in any lvalue whose data type is a pointer
type:

char *foo;
foo = NULL;

These two, if consecutive, can be combined into a declaration with ini-
tializer,

char *foo = NULL;

You can also explicitly cast NULL to the specific pointer type you want—it
makes no difference.

char *foo;
foo = (char *) NULL;

To test whether a pointer is null, compare it with zero or NULL, as shown
here:

if (p != NULL)
/* p is not null. */
operate (p);

Since testing a pointer for not being null is basic and frequent, all but
beginners in C will understand the conditional without need for != NULL:

if (p)
/* p is not null. */
operate (p);

14.7 Dereferencing Null or Invalid Pointers
Trying to dereference a null pointer is an error. On most platforms, it gen-
erally causes a signal, usually SIGSEGV (see Appendix E [Signals], page 245).

char *foo = NULL;

Chapter 14: Pointers 71

c = *foo; /* This causes a signal and terminates. */

Likewise a pointer that has the wrong alignment for the target data type (on
most types of computer), or points to a part of memory that has not been
allocated in the process’s address space.

The signal terminates the program, unless the program has arranged to
handle the signal (see Section “Signal Handling” in The GNU C Library
Reference Manual).

However, the signal might not happen if the dereference is optimized
away. In the example above, if you don’t subsequently use the value of
c, GCC might optimize away the code for *foo. You can prevent such
optimization using the volatile qualifier, as shown here:

volatile char *p;
volatile char c;
c = *p;

You can use this to test whether p points to unallocated memory. Set up
a signal handler first, so the signal won’t terminate the program.

14.8 Void Pointers
The peculiar type void *, a pointer whose target type is void, is used often
in C. It represents a pointer to we-don’t-say-what. Thus,

void *numbered_slot_pointer (int);

declares a function numbered_slot_pointer that takes an integer parameter
and returns a pointer, but we don’t say what type of data it points to.

With type void *, you can pass the pointer around and test whether it
is null. However, dereferencing it gives a void value that can’t be used (see
Section 11.4 [The Void Type], page 55). To dereference the pointer, first
convert it to some other pointer type.

Assignments convert void * automatically to any other pointer type, if
the left operand has a pointer type; for instance,

{
int *p;
/* Converts return value to int *. */
p = numbered_slot_pointer (5);
. . .

}

Passing an argument of type void * for a parameter that has a pointer
type also converts. For example, supposing the function hack is declared to
require type float * for its argument, this will convert the null pointer to
that type.

/* Declare hack that way.
We assume it is defined somewhere else. */

void hack (float *);
...

Chapter 14: Pointers 72

/* Now call hack. */
{

/* Converts return value of numbered_slot_pointer
to float * to pass it to hack. */

hack (numbered_slot_pointer (5));
. . .

}

You can also convert to another pointer type with an explicit cast (see
Section 24.1 [Explicit Type Conversion], page 165), like this:

(int *) numbered_slot_pointer (5)

Here is an example which decides at run time which pointer type to
convert to:

void
extract_int_or_double (void *ptr, bool its_an_int)
{

if (its_an_int)
handle_an_int (*(int *)ptr);

else
handle_a_double (*(double *)ptr);

}

The expression *(int *)ptr means to convert ptr to type int *, then
dereference it.

14.9 Pointer Comparison
Two pointer values are equal if they point to the same location, or if they
are both null. You can test for this with == and !=. Here’s a trivial example:

{
int i;
int *p, *q;

p = &i;
q = &i;
if (p == q)
printf ("This will be printed.\n");

if (p != q)
printf ("This won’t be printed.\n");

}

Ordering comparisons such as > and >= operate on pointers by converting
them to unsigned integers. The C standard says the two pointers must
point within the same object in memory, but on GNU/Linux systems these
operations simply compare the numeric values of the pointers.

The pointer values to be compared should in principle have the same
type, but they are allowed to differ in limited cases. First of all, if the two

Chapter 14: Pointers 73

pointers’ target types are nearly compatible (see Chapter 23 [Compatible
Types], page 164), the comparison is allowed.

If one of the operands is void * (see Section 14.8 [Void Pointers], page 71)
and the other is another pointer type, the comparison operator converts the
void * pointer to the other type so as to compare them. (In standard C, this
is not allowed if the other type is a function pointer type, but that works in
GNU C.)

Comparison operators also allow comparing the integer 0 with a pointer
value. Thus works by converting 0 to a null pointer of the same type as the
other operand.

14.10 Pointer Arithmetic
Adding an integer (positive or negative) to a pointer is valid in C. It assumes
that the pointer points to an element in an array, and advances or retracts
the pointer across as many array elements as the integer specifies. Here is an
example, in which adding a positive integer advances the pointer to a later
element in the same array.

void
incrementing_pointers ()
{

int array[5] = { 45, 29, 104, -3, 123456 };
int elt0, elt1, elt4;

int *p = &array[0];
/* Now p points at element 0. Fetch it. */
elt0 = *p;

++p;
/* Now p points at element 1. Fetch it. */
elt1 = *p;

p += 3;
/* Now p points at element 4 (the last). Fetch it. */
elt4 = *p;

printf ("elt0 %d elt1 %d elt4 %d.\n",
elt0, elt1, elt4);

/* Prints elt0 45 elt1 29 elt4 123456. */
}

Here’s an example where adding a negative integer retracts the pointer
to an earlier element in the same array.

void
decrementing_pointers ()
{

Chapter 14: Pointers 74

int array[5] = { 45, 29, 104, -3, 123456 };
int elt0, elt3, elt4;

int *p = &array[4];
/* Now p points at element 4 (the last). Fetch it. */
elt4 = *p;

--p;
/* Now p points at element 3. Fetch it. */
elt3 = *p;

p -= 3;
/* Now p points at element 0. Fetch it. */
elt0 = *p;

printf ("elt0 %d elt3 %d elt4 %d.\n",
elt0, elt3, elt4);

/* Prints elt0 45 elt3 -3 elt4 123456. */
}

If one pointer value was made by adding an integer to another pointer
value, it should be possible to subtract the pointer values and recover that
integer. That works too in C.

void
subtract_pointers ()
{

int array[5] = { 45, 29, 104, -3, 123456 };
int *p0, *p3, *p4;

int *p = &array[4];
/* Now p points at element 4 (the last). Save the value. */
p4 = p;

--p;
/* Now p points at element 3. Save the value. */
p3 = p;

p -= 3;
/* Now p points at element 0. Save the value. */
p0 = p;

printf ("%d, %d, %d, %d\n",
p4 - p0, p0 - p0, p3 - p0, p0 - p3);

/* Prints 4, 0, 3, -3. */
}

Chapter 14: Pointers 75

The addition operation does not know where arrays are. All it does is
add the integer (multiplied by object size) to the value of the pointer. When
the initial pointer and the result point into a single array, the result is well-
defined.

Warning: Only experts should do pointer arithmetic involving pointers
into different memory objects.

The difference between two pointers has type int, or long if necessary
(see Section 11.1 [Integer Types], page 50). The clean way to declare it is to
use the typedef name ptrdiff_t defined in the file stddef.h.

This definition of pointer subtraction is consistent with pointer-integer
addition, in that (p3 - p1) + p1 equals p3, as in ordinary algebra.

In standard C, addition and subtraction are not allowed on void *, since
the target type’s size is not defined in that case. Likewise, they are not
allowed on pointers to function types. However, these operations work in
GNU C, and the “size of the target type” is taken as 1.

14.11 Pointers and Arrays
The clean way to refer to an array element is array[index]. Another,
complicated way to do the same job is to get the address of that element
as a pointer, then dereference it: * (&array[0] + index) (or equivalently *
(array + index)). This first gets a pointer to element zero, then increments
it with + to point to the desired element, then gets the value from there.

That pointer-arithmetic construct is the definition of square brackets
in C. a[b] means, by definition, *(a + b). This definition uses a and b
symmetrically, so one must be a pointer and the other an integer; it does
not matter which comes first.

Since indexing with square brackets is defined in terms of addition and
dereference, that too is symmetrical. Thus, you can write 3[array] and it
is equivalent to array[3]. However, it would be foolish to write 3[array],
since it has no advantage and could confuse people who read the code.

It may seem like a discrepancy that the definition *(a + b) requires a
pointer, but array[3] uses an array value instead. Why is this valid?
The name of the array, when used by itself as an expression (other than
in sizeof), stands for a pointer to the arrays’s zeroth element. Thus, array
+ 3 converts array implicitly to &array[0], and the result is a pointer to
element 3, equivalent to &array[3].

Since square brackets are defined in terms of such addition, array[3] first
converts array to a pointer. That’s why it works to use an array directly in
that construct.

14.12 Pointer Arithmetic at Low Level
The behavior of pointer arithmetic is theoretically defined only when the
pointer values all point within one object allocated in memory. But the

Chapter 14: Pointers 76

addition and subtraction operators can’t tell whether the pointer values are
all within one object. They don’t know where objects start and end. So
what do they really do?

Adding pointer p to integer i treats p as a memory address, which is in
fact an integer—call it pint. It treats i as a number of elements of the type
that p points to. These elements’ sizes add up to i * sizeof (*p). So the
sum, as an integer, is pint + i * sizeof (*p). This value is reinterpreted
as a pointer like p.

If the starting pointer value p and the result do not point at parts of
the same object, the operation is not officially legitimate, and C code is not
“supposed” to do it. But you can do it anyway, and it gives precisely the
results described by the procedure above. In some special situations it can
do something useful, but non-wizards should avoid it.

Here’s a function to offset a pointer value as if it pointed to an object of
any given size, by explicitly performing that calculation:

#include <stdint.h>

void *
ptr_add (void *p, int i, int objsize)
{

intptr_t p_address = (long) p;
intptr_t totalsize = i * objsize;
intptr_t new_address = p_address + totalsize;
return (void *) new_address;

}

This does the same job as p + i with the proper pointer type for p. It
uses the type intptr_t, which is defined in the header file stdint.h. (In
practice, long long would always work, but it is cleaner to use intptr_t.)

14.13 Pointer Increment and Decrement
The ‘++’ operator adds 1 to a variable. We have seen it for integers (see
Section 7.4 [Increment/Decrement], page 35), but it works for pointers too.
For instance, suppose we have a series of positive integers, terminated by a
zero, and we want to add them all up.

int
sum_array_till_0 (int *p)
{

int sum = 0;

for (;;)
{
/* Fetch the next integer. */
int next = *p++;
/* Exit the loop if it’s 0. */

Chapter 14: Pointers 77

if (next == 0)
break;

/* Add it into running total. */
sum += next;

}

return sum;
}

The statement ‘break;’ will be explained further on (see Section 19.6.3
[break Statement], page 112). Used in this way, it immediately exits the
surrounding for statement.

*p++ parses as *(p++), because a postfix operator always takes prece-
dence over a prefix operator. Therefore, it dereferences p, and increments p
afterwards. Incrementing a variable means adding 1 to it, as in p = p + 1.
Since p is a pointer, adding 1 to it advances it by the width of the datum it
points to—in this case, one int. Therefore, each iteration of the loop picks
up the next integer from the series and puts it into next.

This for-loop has no initialization expression since p and sum are al-
ready initialized, it has no end-test since the ‘break;’ statement will exit
it, and needs no expression to advance it since that’s done within the loop
by incrementing p and sum. Thus, those three expressions after for are left
empty.

Another way to write this function is by keeping the parameter value
unchanged and using indexing to access the integers in the table.

int
sum_array_till_0_indexing (int *p)
{

int i;
int sum = 0;

for (i = 0; ; i++)
{
/* Fetch the next integer. */
int next = p[i];
/* Exit the loop if it’s 0. */
if (next == 0)

break;
/* Add it into running total. */
sum += next;

}

return sum;
}

Chapter 14: Pointers 78

In this program, instead of advancing p, we advance i and add it to p.
(Recall that p[i] means *(p + i).) Either way, it uses the same address to
get the next integer.

It makes no difference in this program whether we write i++ or ++i,
because the value is not used. All that matters is the effect, to increment i.

The ‘--’ operator also works on pointers; it can be used to scan backwards
through an array, like this:

int
after_last_nonzero (int *p, int len)
{

/* Set up q to point just after the last array element. */
int *q = p + len;

while (q != p)
/* Step q back until it reaches a nonzero element. */
if (*--q != 0)
/* Return the index of the element after that nonzero. */
return q - p + 1;

return 0;
}

That function returns the length of the nonzero part of the array specified
by its arguments; that is, the index of the first zero of the run of zeros at
the end.

14.14 Drawbacks of Pointer Arithmetic
Pointer arithmetic is clean and elegant, but it is also the cause of a major
security flaw in the C language. Theoretically, it is only valid to adjust a
pointer within one object allocated as a unit in memory. However, if you
unintentionally adjust a pointer across the bounds of the object and into
some other object, the system has no way to detect this error.

A bug which does that can easily result in clobbering part of another
object. For example, with array[-1] you can read or write the nonexistent
element before the beginning of an array—probably part of some other data.

Combining pointer arithmetic with casts between pointer types, you can
create a pointer that fails to be properly aligned for its type. For example,

int a[2];
char *pa = (char *)a;
int *p = (int *)(pa + 1);

gives p a value pointing to an “integer” that includes part of a[0] and part
of a[1]. Dereferencing that with *p can cause a fatal SIGSEGV signal or it
can return the contents of that badly aligned int (see Appendix E [Signals],
page 245. If it “works,” it may be quite slow. It can also cause aliasing
confusions (see Appendix B [Aliasing], page 238).

Chapter 14: Pointers 79

Warning: Using improperly aligned pointers is risky—don’t do it unless
it is really necessary.

14.15 Pointer-Integer Conversion
On modern computers, an address is simply a number. It occupies the
same space as some size of integer. In C, you can convert a pointer to the
appropriate integer types and vice versa, without losing information. The
appropriate integer types are uintptr_t (an unsigned type) and intptr_t
(a signed type). Both are defined in stdint.h.

For instance,

#include <stdint.h>
#include <stdio.h>

void
print_pointer (void *ptr)
{

uintptr_t converted = (uintptr_t) ptr;

printf ("Pointer value is 0x%x\n",
(unsigned int) converted);

}

The specification ‘%x’ in the template (the first argument) for printf means
to represent this argument using hexadecimal notation. It’s cleaner to use
uintptr_t, since hexadecimal printing treats the number as unsigned, but
it won’t actually matter: all printf gets to see is the series of bits in the
number.

Warning: Converting pointers to integers is risky—don’t do it unless it
is really necessary.

14.16 Printing Pointers
To print the numeric value of a pointer, use the ‘%p’ specifier. For example:

void
print_pointer (void *ptr)
{

printf ("Pointer value is %p\n", ptr);
}

The specification ‘%p’ works with any pointer type. It prints ‘0x’ followed
by the address in hexadecimal, printed as the appropriate unsigned integer
type.

80

15 Structures

A structure is a user-defined data type that holds various fields of data.
Each field has a name and a data type specified in the structure’s definition.

Here we define a structure suitable for storing a linked list of integers.
Each list item will hold one integer, plus a pointer to the next item.

struct intlistlink
{
int datum;
struct intlistlink *next;

};

The structure definition has a type tag so that the code can refer to
this structure. The type tag here is intlistlink. The definition refers
recursively to the same structure through that tag.

You can define a structure without a type tag, but then you can’t refer
to it again. That is useful only in some special contexts, such as inside a
typedef or a union.

The contents of the structure are specified by the field declarations inside
the braces. Each field in the structure needs a declaration there. The fields
in one structure definition must have distinct names, but these names do
not conflict with any other names in the program.

A field declaration looks just like a variable declaration. You can combine
field declarations with the same beginning, just as you can combine variable
declarations.

This structure has two fields. One, named datum, has type int and will
hold one integer in the list. The other, named next, is a pointer to another
struct intlistlink which would be the rest of the list. In the last list
item, it would be NULL.

This structure definition is recursive, since the type of the next field refers
to the structure type. Such recursion is not a problem; in fact, you can use
the type struct intlistlink * before the definition of the type struct
intlistlink itself. That works because pointers to all kinds of structures
really look the same at the machine level.

After defining the structure, you can declare a variable of type struct
intlistlink like this:

struct intlistlink foo;

The structure definition itself can serve as the beginning of a variable
declaration, so you can declare variables immediately after, like this:

struct intlistlink
{
int datum;
struct intlistlink *next;

} foo;

Chapter 15: Structures 81

But that is ugly. It is almost always clearer to separate the definition of the
structure from its uses.

Declaring a structure type inside a block (see Section 19.4 [Blocks],
page 110) limits the scope of the structure type name to that block. That
means the structure type is recognized only within that block. Declaring it
in a function parameter list, as here,

int f (struct foo {int a, b} parm);

(assuming that struct foo is not already defined) limits the scope of the
structure type struct foo to that parameter list; that is basically useless,
so it triggers a warning.

Standard C requires at least one field in a structure. GNU C does not
require this.

15.1 Referencing Structure Fields
To make a structure useful, there has to be a way to examine and store its
fields. The ‘.’ (period) operator does that; its use looks like object.field.

Given this structure and variable,

struct intlistlink
{
int datum;
struct intlistlink *next;

};

struct intlistlink foo;

you can write foo.datum and foo.next to refer to the two fields in the value
of foo. These fields are lvalues, so you can store values into them, and read
the values out again.

Most often, structures are dynamically allocated (see the next section),
and we refer to the objects via pointers. (*p).field is somewhat cum-
bersome, so there is an abbreviation: p->field. For instance, assume the
program contains this declaration:

struct intlistlink *ptr;

You can write ptr->datum and ptr->next to refer to the two fields in the
object that ptr points to.

If a unary operator precedes an expression using ‘->’, the ‘->’ nests inside:

-ptr->datum is equivalent to -(ptr->datum)

You can intermix ‘->’ and ‘.’ without parentheses, as shown here:

struct { double d; struct intlistlink l; } foo;

. . .foo.l.next->next->datum. . .

Chapter 15: Structures 82

15.2 Dynamic Memory Allocation
To allocate an object dynamically, call the library function malloc (see
Section “Basic Allocation” in The GNU C Library Reference Manual). Here
is how to allocate an object of type struct intlistlink. To make this code
work, include the file stdlib.h, like this:

#include <stddef.h> /* Defines NULL. */
#include <stdlib.h> /* Declares malloc. */

...

struct intlistlink *
alloc_intlistlink ()
{

struct intlistlink *p;

p = malloc (sizeof (struct intlistlink));

if (p == NULL)
fatal ("Ran out of storage");

/* Initialize the contents. */
p->datum = 0;
p->next = NULL;

return p;
}

malloc returns void *, so the assignment to p will automatically convert
it to type struct intlistlink *. The return value of malloc is always
sufficiently aligned (see Appendix A [Type Alignment], page 236) that it is
valid for any data type.

The test for p == NULL is necessary because malloc returns a null pointer
if it cannot get any storage. We assume that the program defines the function
fatal to report a fatal error to the user.

Here’s how to add one more integer to the front of such a list:

struct intlistlink *my_list = NULL;

void
add_to_mylist (int my_int)
{

struct intlistlink *p = alloc_intlistlink ();

p->datum = my_int;
p->next = mylist;
mylist = p;

Chapter 15: Structures 83

}

The way to free the objects is by calling free. Here’s a function to free
all the links in one of these lists:

void
free_intlist (struct intlistlink *p)
{

while (p)
{
struct intlistlink *q = p;
p = p->next;
free (q);

}
}

We must extract the next pointer from the object before freeing it, be-
cause free can clobber the data that was in the object. For the same reason,
the program must not use the list any more after freeing its elements. To
make sure it won’t, it is best to clear out the variable where the list was
stored, like this:

free_intlist (mylist);

mylist = NULL;

15.3 Field Offset
To determine the offset of a given field field in a structure type type, use the
macro offsetof, which is defined in the file stddef.h. It is used like this:

offsetof (type, field)

Here is an example:

struct foo
{

int element;
struct foo *next;

};

offsetof (struct foo, next)
/* On most machines that is 4. It may be 8. */

15.4 Structure Layout
The rest of this chapter covers advanced topics about structures. If you are
just learning C, you can skip it.

The precise layout of a struct type is crucial when using it to overlay
hardware registers, to access data structures in shared memory, or to assem-
ble and disassemble packets for network communication. It is also important
for avoiding memory waste when the program makes many objects of that

Chapter 15: Structures 84

type. However, the layout depends on the target platform. Each platform
has conventions for structure layout, which compilers need to follow.

Here are the conventions used on most platforms.

The structure’s fields appear in the structure layout in the order they are
declared. When possible, consecutive fields occupy consecutive bytes within
the structure. However, if a field’s type demands more alignment than it
would get that way, C gives it the alignment it requires by leaving a gap
after the previous field.

Once all the fields have been laid out, it is possible to determine the
structure’s alignment and size. The structure’s alignment is the maximum
alignment of any of the fields in it. Then the structure’s size is rounded up
to a multiple of its alignment. That may require leaving a gap at the end of
the structure.

Here are some examples, where we assume that char has size and align-
ment 1 (always true), and int has size and alignment 4 (true on most kinds
of computers):

struct foo
{

char a, b;
int c;

};

This structure occupies 8 bytes, with an alignment of 4. a is at offset 0, b is
at offset 1, and c is at offset 4. There is a gap of 2 bytes before c.

Contrast that with this structure:

struct foo
{

char a;
int c;
char b;

};

This structure has size 12 and alignment 4. a is at offset 0, c is at offset
4, and b is at offset 8. There are two gaps: three bytes before c, and three
bytes at the end.

These two structures have the same contents at the C level, but one takes
8 bytes and the other takes 12 bytes due to the ordering of the fields. A
reliable way to avoid this sort of wastage is to order the fields by size, biggest
fields first.

15.5 Packed Structures
In GNU C you can force a structure to be laid out with no gaps by adding
__attribute__((packed)) after struct (or at the end of the structure type
declaration). Here’s an example:

struct __attribute__((packed)) foo

Chapter 15: Structures 85

{
char a;
int c;
char b;

};

Without __attribute__((packed)), this structure occupies 12 bytes (as
described in the previous section), assuming 4-byte alignment for int. With
__attribute__((packed)), it is only 6 bytes long—the sum of the lengths
of its fields.

Use of __attribute__((packed)) often results in fields that don’t have
the normal alignment for their types. Taking the address of such a field can
result in an invalid pointer because of its improper alignment. Dereferencing
such a pointer can cause a SIGSEGV signal on a machine that doesn’t, in
general, allow unaligned pointers.

See Appendix D [Attributes], page 243.

15.6 Bit Fields
A structure field declaration with an integer type can specify the number of
bits the field should occupy. We call that a bit field. These are useful because
consecutive bit fields are packed into a larger storage unit. For instance,

unsigned char opcode: 4;

specifies that this field takes just 4 bits. Since it is unsigned, its possible
values range from 0 to 15. A signed field with 4 bits, such as this,

signed char small: 4;

can hold values from -8 to 7.

You can subdivide a single byte into those two parts by writing

unsigned char opcode: 4;
signed char small: 4;

in the structure. With bit fields, these two numbers fit into a single char.

Here’s how to declare a one-bit field that can hold either 0 or 1:

unsigned char special_flag: 1;

You can also use the bool type for bit fields:

bool special_flag: 1;

Except when using bool (which is always unsigned, see Section 11.1.5
[Boolean Type], page 52), always specify signed or unsigned for a bit field.
There is a default, if that’s not specified: the bit field is signed if plain char
is signed, except that the option -funsigned-bitfields forces unsigned as
the default. But it is cleaner not to depend on this default.

Bit fields are special in that you cannot take their address with ‘&’. They
are not stored with the size and alignment appropriate for the specified type,
so they cannot be addressed through pointers to that type.

Chapter 15: Structures 86

15.7 Bit Field Packing
Programs to communicate with low-level hardware interfaces need to define
bit fields laid out to match the hardware data. This section explains how to
do that.

Consecutive bit fields are packed together, but each bit field must fit
within a single object of its specified type. In this example,

unsigned short a : 3, b : 3, c : 3, d : 3, e : 3;

all five fields fit consecutively into one two-byte short. They need 15 bits,
and one short provides 16. By contrast,

unsigned char a : 3, b : 3, c : 3, d : 3, e : 3;

needs three bytes. It fits a and b into one char, but c won’t fit in that char
(they would add up to 9 bits). So c and d go into a second char, leaving a
gap of two bits between b and c. Then e needs a third char. By contrast,

unsigned char a : 3, b : 3;
unsigned int c : 3;
unsigned char d : 3, e : 3;

needs only two bytes: the type unsigned int allows c to straddle bytes that
are in the same word.

You can leave a gap of a specified number of bits by defining a nameless
bit field. This looks like type : nbits;. It is allocated space in the structure
just as a named bit field would be allocated.

You can force the following bit field to advance to the following aligned
memory object with type : 0;.

Both of these constructs can syntactically share type with ordinary bit
fields. This example illustrates both:

unsigned int a : 5, : 3, b : 5, : 0, c : 5, : 3, d : 5;

It puts a and b into one int, with a 3-bit gap between them. Then : 0
advances to the next int, so c and d fit into that one.

These rules for packing bit fields apply to most target platforms, including
all the usual real computers. A few embedded controllers have special layout
rules.

15.8 const Fields
A structure field declared const cannot be assigned to (see Section 21.1
[const], page 136). For instance, let’s define this modified version of struct
intlistlink:

struct intlistlink_ro /* ‘‘ro” for read-only. */
{
const int datum;
struct intlistlink *next;

};

Chapter 15: Structures 87

This structure can be used to prevent part of the code from modifying
the datum field:

/* p has type struct intlistlink *.
Convert it to struct intlistlink_ro *. */

struct intlistlink_ro *q
= (struct intlistlink_ro *) p;

q->datum = 5; /* Error! */
p->datum = 5; /* Valid since *p is

not a struct intlistlink_ro. */

A const field can get a value in two ways: by initialization of the whole
structure, and by making a pointer-to-structure point to an object in which
that field already has a value.

Any const field in a structure type makes assignment impossible for
structures of that type (see Section 15.12 [Structure Assignment], page 89).
That is because structure assignment works by assigning the structure’s
fields, one by one.

15.9 Arrays of Length Zero
GNU C allows zero-length arrays. They are useful as the last element of
a structure that is really a header for a variable-length object. Here’s an
example, where we construct a variable-size structure to hold a line which is
this_length characters long:

struct line {
int length;
char contents[0];

};

struct line *thisline
= ((struct line *)

malloc (sizeof (struct line)
+ this_length));

thisline->length = this_length;

In ISO C90, we would have to give contents a length of 1, which means
either wasting space or complicating the argument to malloc.

15.10 Flexible Array Fields
The C99 standard adopted a more complex equivalent of zero-length array
fields. It’s called a flexible array, and it’s indicated by omitting the length,
like this:

struct line
{

int length;

Chapter 15: Structures 88

char contents[];
};

The flexible array has to be the last field in the structure, and there must
be other fields before it.

Under the C standard, a structure with a flexible array can’t be part of
another structure, and can’t be an element of an array.

GNU C allows static initialization of flexible array fields. The effect is to
“make the array long enough” for the initializer.

struct f1 { int x; int y[]; } f1
= { 1, { 2, 3, 4 } };

This defines a structure variable named f1 whose type is struct f1. In C,
a variable name or function name never conflicts with a structure type tag.

Omitting the flexible array field’s size lets the initializer determine it.
This is allowed only when the flexible array is defined in the outermost
structure and you declare a variable of that structure type. For example:

struct foo { int x; int y[]; };
struct bar { struct foo z; };

struct foo a = { 1, { 2, 3, 4 } }; // Valid.
struct bar b = { { 1, { 2, 3, 4 } } }; // Invalid.
struct bar c = { { 1, { } } }; // Valid.
struct foo d[1] = { { 1 { 2, 3, 4 } } }; // Invalid.

15.11 Overlaying Different Structures
Be careful about using different structure types to refer to the same memory
within one function, because GNU C can optimize code assuming it never
does that. See Appendix B [Aliasing], page 238. Here’s an example of the
kind of aliasing that can cause the problem:

struct a { int size; char *data; };
struct b { int size; char *data; };
struct a foo;
struct b *q = (struct b *) &foo;

Here q points to the same memory that the variable foo occupies, but
they have two different types. The two types struct a and struct b are
defined alike, but they are not the same type. Interspersing references using
the two types, like this,

p->size = 0;
q->size = 1;
x = p->size;

allows GNU C to assume that p->size is still zero when it is copied into x.
The compiler “knows” that q points to a struct b and this cannot overlap
with a struct a.

Chapter 15: Structures 89

Other compilers might also do this optimization. The ISO C standard
considers such code erroneous, precisely so that this optimization will be
valid.

15.12 Structure Assignment
Assignment operating on a structure type copies the structure. The left and
right operands must have the same type. Here is an example:

#include <stddef.h> /* Defines NULL. */
#include <stdlib.h> /* Declares malloc. */
. . .

struct point { double x, y; };

struct point *
copy_point (struct point point)
{

struct point *p
= (struct point *) malloc (sizeof (struct point));

if (p == NULL)
fatal ("Out of memory");

*p = point;
return p;

}

Notionally, assignment on a structure type works by copying each of the
fields. Thus, if any of the fields has the const qualifier, that structure type
does not allow assignment:

struct point { const double x, y; };

struct point a, b;

a = b; /* Error! */

See Chapter 7 [Assignment Expressions], page 33.

15.13 Unions
A union type defines alternative ways of looking at the same piece of memory.
Each alternative view is defined with a data type, and identified by a name.
A union definition looks like this:

union name
{

alternative declarations. . .
};

Each alternative declaration looks like a structure field declaration, except
that it can’t be a bit field. For instance,

Chapter 15: Structures 90

union number
{

long int integer;
double float;

}

lets you store either an integer (type long int) or a floating point number
(type double) in the same place in memory. The length and alignment of
the union type are the maximum of all the alternatives—they do not have
to be the same. In this union example, double probably takes more space
than long int, but that doesn’t cause a problem in programs that use the
union in the normal way.

The members don’t have to be different in data type. Sometimes each
member pertains to a way the data will be used. For instance,

union datum
{

double latitude;
double longitude;
double height;
double weight;
int continent;

}

This union holds one of several kinds of data; most kinds are floating
points, but the value can also be a code for a continent which is an integer.
You could use one member of type double to access all the values which have
that type, but the different member names will make the program clearer.

The alignment of a union type is the maximum of the alignments of the
alternatives. The size of the union type is the maximum of the sizes of the
alternatives, rounded up to a multiple of the alignment (because every type’s
size must be a multiple of its alignment).

All the union alternatives start at the address of the union itself. If an
alternative is shorter than the union as a whole, it occupies the first part of
the union’s storage, leaving the last part unused for that alternative.

Warning: if the code stores data using one union alternative and accesses
it with another, the results depend on the kind of computer in use. Only
wizards should try to do this. However, when you need to do this, a union
is a clean way to do it.

Assignment works on any union type by copying the entire value.

15.14 Packing With Unions
Sometimes we design a union with the intention of packing various kinds of
objects into a certain amount of memory space. For example.

union bytes8
{

Chapter 15: Structures 91

long long big_int_elt;
double double_elt;
struct { int first, second; } two_ints;
struct { void *first, *second; } two_ptrs;

};

union bytes8 *p;

This union makes it possible to look at 8 bytes of data that p points
to as a single 8-byte integer (p->big_int_elt), as a single floating-point
number (p->double_elt), as a pair of integers (p->two_ints.first and
p->two_ints.second), or as a pair of pointers (p->two_ptrs.first and
p->two_ptrs.second).

To pack storage with such a union makes assumptions about the sizes of
all the types involved. This particular union was written expecting a pointer
to have the same size as int. On a machine where one pointer takes 8 bytes,
the code using this union probably won’t work as expected. The union, as
such, will function correctly—if you store two values through two_ints and
extract them through two_ints, you will get the same integers back—but
the part of the program that expects the union to be 8 bytes long could
malfunction, or at least use too much space.

The above example shows one case where a struct type with no tag can
be useful. Another way to get effectively the same result is with arrays as
members of the union:

union eight_bytes
{

long long big_int_elt;
double double_elt;
int two_ints[2];
void *two_ptrs[2];

};

15.15 Cast to a Union Type
In GNU C, you can explicitly cast any of the alternative types to the union
type; for instance,

(union eight_bytes) (long long) 5

makes a value of type union eight_bytes which gets its contents through
the alternative named big_int_elt.

The value being cast must exactly match the type of the alternative, so
this is not valid:

(union eight_bytes) 5 /* Error! 5 is int. */

A cast to union type looks like any other cast, except that the type
specified is a union type. You can specify the type either with union tag or
with a typedef name (see Chapter 18 [Defining Typedef Names], page 107).

Chapter 15: Structures 92

Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in an alternative of the union:

union foo u;

u = (union foo) x means u.i = x

u = (union foo) y means u.d = y

You can also use the union cast as a function argument:

void hack (union foo);
. . .
hack ((union foo) x);

15.16 Structure Constructors
You can construct a structure value by writing its type in parentheses, fol-
lowed by an initializer that would be valid in a declaration for that type.
For instance, given this declaration,

struct foo {int a; char b[2];} structure;

you can create a struct foo value as follows:

((struct foo) {x + y, ’a’, 0})

This specifies x + y for field a, the character ‘a’ for field b’s element 0, and
the null character for field b’s element 1.

The parentheses around that constructor are to necessary, but we recom-
mend writing them to make the nesting of the containing expression clearer.

You can also show the nesting of the two by writing it like this:

((struct foo) {x + y, {’a’, 0} })

Each of those is equivalent to writing the following statement expression
(see Section 19.15 [Statement Exprs], page 125):

({
struct foo temp = {x + y, ’a’, 0};
temp;

})

You can also create a union value this way, but it is not especially useful
since that is equivalent to doing a cast:

((union whosis) {value})
is equivalent to

((union whosis) (value))

15.17 Unnamed Types as Fields
A structure or a union can contain, as fields, unnamed structures and unions.
Here’s an example:

struct

Chapter 15: Structures 93

{
int a;
union
{
int b;
float c;

};
int d;

} foo;

You can access the fields of the unnamed union within foo as if they were
individual fields at the same level as the union definition:

foo.a = 42;
foo.b = 47;
foo.c = 5.25; // Overwrites the value in foo.b.
foo.d = 314;

Avoid using field names that could cause ambiguity. For example, with
this definition:

struct
{

int a;
struct
{
int a;
float b;

};
} foo;

it is impossible to tell what foo.a refers to. GNU C reports an error when
a definition is ambiguous in this way.

15.18 Incomplete Types
A type that has not been fully defined is called an incomplete type. Structure
and union types are incomplete when the code makes a forward reference,
such as struct foo, before defining the type. An array type is incomplete
when its length is unspecified.

You can’t use an incomplete type to declare a variable or field, or use it for
a function parameter or return type. The operators sizeof and _Alignof
give errors when used on an incomplete type.

However, you can define a pointer to an incomplete type, and declare a
variable or field with such a pointer type. In general, you can do everything
with such pointers except dereference them. For example:

extern void bar (struct mysterious_value *);

void
foo (struct mysterious_value *arg)

Chapter 15: Structures 94

{
bar (arg);

}

. . .

{
struct mysterious_value *p, **q;

p = *q;
foo (p);

}

These examples are valid because the code doesn’t try to understand what
p points to; it just passes the pointer around. (Presumably bar is defined
in some other file that really does have a definition for struct mysterious_
value.) However, dereferencing the pointer would get an error; that requires
a definition for the structure type.

15.19 Intertwined Incomplete Types
When several structure types contain pointers to each other, you can de-
fine the types in any order because pointers to types that come later are
incomplete types. Thus, Here is an example.

/* An employee record points to a group. */
struct employee
{

char *name;
. . .
struct group *group; /* incomplete type. */
. . .

};

/* An employee list points to employees. */
struct employee_list
{

struct employee *this_one;
struct employee_list *next; /* incomplete type. */
. . .

};

/* A group points to one employee list. */
struct group
{

char *name;
. . .
struct employee_list *employees;

Chapter 15: Structures 95

. . .
};

15.20 Type Tags
The name that follows struct (see Chapter 15 [Structures], page 80), union
(see Section 15.13 [Unions], page 89, or enum (see Chapter 17 [Enumeration
Types], page 105) is called a type tag. In C, a type tag never conflicts with a
variable name or function name; the type tags have a separate name space.
Thus, there is no name conflict in this code:

struct pair { int a, b; };
int pair = 1;

nor in this one:

struct pair { int a, b; } pair;

where pair is both a structure type tag and a variable name.

However, struct, union, and enum share the same name space of tags,
so this is a conflict:

struct pair { int a, b; };
enum pair { c, d };

and so is this:

struct pair { int a, b; };
struct pair { int c, d; };

When the code defines a type tag inside a block, the tag’s scope is limited
to that block (as for local variables). Two definitions for one type tag do
not conflict if they are in different scopes; rather, each is valid in its scope.
For example,

struct pair { int a, b; };

void
pair_up_doubles (int len, double array[])
{

struct pair { double a, b; };
. . .

}

has two definitions for struct pair which do not conflict. The one inside
the function applies only within the definition of pair_up_doubles. Within
its scope, that definition shadows the outer definition.

If struct pair appears inside the function body, before the inner defi-
nition, it refers to the outer definition—the only one that has been seen at
that point. Thus, in this code,

struct pair { int a, b; };

void
pair_up_doubles (int len, double array[])

96

{
struct two_pairs { struct pair *p, *q; };
struct pair { double a, b; };
. . .

}

the structure two_pairs has pointers to the outer definition of struct pair,
which is probably not desirable.

To prevent that, you can write struct pair; inside the function body
as a variable declaration with no variables. This is a forward declaration of
the type tag pair: it makes the type tag local to the current block, with the
details of the type to come later. Here’s an example:

void
pair_up_doubles (int len, double array[])
{

/* Forward declaration for pair. */
struct pair;
struct two_pairs { struct pair *p, *q; };
/* Give the details. */
struct pair { double a, b; };
. . .

}

However, the cleanest practice is to avoid shadowing type tags.

97

16 Arrays

An array is a data object that holds a series of elements, all of the same
data type. Each element is identified by its numeric index within the array.

We presented arrays of numbers in the sample programs early in this
manual (see Section 4.2 [Array Example], page 15). However, arrays can
have elements of any data type, including pointers, structures, unions, and
other arrays.

If you know another programming language, you may suppose that you
know all about arrays, but C arrays have special quirks, so in this chapter
we collect all the information about arrays in C.

The elements of a C array are allocated consecutively in memory, with
no gaps between them. Each element is aligned as required for its data type
(see Appendix A [Type Alignment], page 236).

16.1 Accessing Array Elements
If the variable a is an array, the nth element of a is a[n]. You can use that
expression to access an element’s value or to assign to it:

x = a[5];
a[6] = 1;

Since the variable a is an lvalue, a[n] is also an lvalue.

The lowest valid index in an array is 0, not 1, and the highest valid index
is one less than the number of elements.

The C language does not check whether array indices are in bounds, so if
the code uses an out-of-range index, it will access memory outside the array.

Warning: Using only valid index values in C is the programmer’s respon-
sibility.

Array indexing in C is not a primitive operation: it is defined in terms of
pointer arithmetic and dereferencing. Now that we know what a[i] does,
we can ask how a[i] does its job.

In C, x[y] is an abbreviation for *(x+y). Thus, a[i] really means
*(a+i). See Section 14.11 [Pointers and Arrays], page 75.

When an expression with array type (such as a) appears as part of a
larger C expression, it is converted automatically to a pointer to element
zero of that array. For instance, a in an expression is equivalent to &a[0].
Thus, *(a+i) is computed as *(&a[0]+i).

Now we can analyze how that expression gives us the desired element of
the array. It makes a pointer to element 0 of a, advances it by the value of
i, and dereferences that pointer.

Another equivalent way to write the expression is (&a[0])[i].

Chapter 16: Arrays 98

16.2 Declaring an Array
To make an array declaration, write [length] after the name being declared.
This construct is valid in the declaration of a variable, a function parameter,
a function value type (the value can’t be an array, but it can be a pointer
to one), a structure field, or a union alternative.

The surrounding declaration specifies the element type of the array; that
can be any type of data, but not void or a function type. For instance,

double a[5];

declares a as an array of 5 doubles.

struct foo bstruct[length];

declares bstruct as an array of length objects of type struct foo. A
variable array size like this is allowed when the array is not file-scope.

Other declaration constructs can nest within the array declaration con-
struct. For instance:

struct foo *b[length];

declares b as an array of length pointers to struct foo. This shows that the
length need not be a constant (see Section 16.9 [Arrays of Variable Length],
page 103).

double (*c)[5];

declares c as a pointer to an array of 5 doubles, and

char *(*f (int))[5];

declares f as a function taking an int argument and returning a pointer to
an array of 5 strings (pointers to chars).

double aa[5][10];

declares aa as an array of 5 elements, each of which is an array of 10 doubles.
This shows how to declare a multidimensional array in C (see Section 16.7
[Multidimensional Arrays], page 101).

All these declarations specify the array’s length, which is needed in these
cases in order to allocate storage for the array.

16.3 Strings
A string in C is a sequence of elements of type char, terminated with the
null character, the character with code zero.

Programs often need to use strings with specific, fixed contents. To
write one in a C program, use a string constant such as "Take me to your
leader!". The data type of a string constant is char *. For the full syn-
tactic details of writing string constants, Section 12.7 [String Constants],
page 61.

To declare a place to store a non-constant string, declare an array of
char. Keep in mind that it must include one extra char for the terminating
null. For instance,

Chapter 16: Arrays 99

char text = { ’H’, ’e’, ’l’, ’l’, ’o’, 0 };

declares an array named ‘text’ with six elements—five letters and the ter-
minating null character. An equivalent way to get the same result is this,

char text = "Hello";

which copies the elements of the string constant, including its terminating
null character.

char message[200];

declares an array long enough to hold a string of 199 ASCII characters plus
the terminating null character.

When you store a string into message be sure to check or prove that the
length does not exceed its size. For example,

void
set_message (char *text)
{

int i;
for (i = 0; i < sizeof (message); i++)
{
message[i] = text[i];
if (text[i] == 0)
return;

}
fatal_error ("Message is too long for ‘message’);

}

It’s easy to do this with the standard library function strncpy, which
fills out the whole destination array (up to a specified length) with null
characters. Thus, if the last character of the destination is not null, the
string did not fit. Many system libraries, including the GNU C library,
hand-optimize strncpy to run faster than an explicit for-loop.

Here’s what the code looks like:

void
set_message (char *text)
{

strncpy (message, text, sizeof (message));
if (message[sizeof (message) - 1] != 0)
fatal_error ("Message is too long for ‘message’);

}

See Section “String and Array Utilities” in The GNU C Library Refer-
ence Manual, for more information about the standard library functions for
operating on strings.

You can avoid putting a fixed length limit on strings you construct or
operate on by allocating the space for them dynamically. See Section 15.2
[Dynamic Memory Allocation], page 82.

Chapter 16: Arrays 100

16.4 Array Type Designators
Every C type has a type designator, which you make by deleting the variable
name and the semicolon from a declaration (see Section 11.6 [Type Desig-
nators], page 55). The designators for array types follow this rule, but they
may appear surprising.

type int a[5]; designator int [5]
type double a[5][3]; designator double [5][3]
type struct foo *a[5]; designator struct foo *[5]

16.5 Incomplete Array Types
An array is equivalent, for most purposes, to a pointer to its zeroth element.
When that is true, the length of the array is irrelevant. The length needs to
be known only for allocating space for the array, or for sizeof and typeof
(see Section 20.4 [Auto Type], page 131). Thus, in some contexts C allows

• An extern declaration says how to refer to a variable allocated else-
where. It does not need to allocate space for the variable, so if it is an
array, you can omit the length. For example,

extern int foo[];

• When declaring a function parameter as an array, the argument value
passed to the function is really a pointer to the array’s zeroth element.
This value does not say how long the array really is, there is no need to
declare it. For example,

int
func (int foo[])

These declarations are examples of incomplete array types, types that
are not fully specified. The incompleteness makes no difference for accessing
elements of the array, but it matters for some other things. For instance,
sizeof is not allowed on an incomplete type.

With multidimensional arrays, only the first dimension can be omitted:

extern struct chesspiece *funnyboard foo[][8];

In other words, the code doesn’t have to say how many rows there are,
but it must state how big each row is.

16.6 Limitations of C Arrays
Arrays have quirks in C because they are not “first-class objects”: there is
no way in C to operate on an array as a unit.

The other composite objects in C, structures and unions, are first-class
objects: a C program can copy a structure or union value in an assignment,
or pass one as an argument to a function, or make a function return one.
You can’t do those things with an array in C. That is because a value you
can operate on never has an array type.

Chapter 16: Arrays 101

An expression in C can have an array type, but that doesn’t produce
the array as a value. Instead it is converted automatically to a pointer to
the array’s element at index zero. The code can operate on the pointer,
and through that on individual elements of the array, but it can’t get and
operate on the array as a unit.

There are three exceptions to this conversion rule, but none of them offers
a way to operate on the array as a whole.

First, ‘&’ applied to an expression with array type gives you the address of
the array, as an array type. However, you can’t operate on the whole array
that way—if you apply ‘*’ to get the array back, that expression converts,
as usual, to a pointer to its zeroth element.

Second, the operators sizeof, _Alignof, and typeof do not convert the
array to a pointer; they leave it as an array. But they don’t operate on the
array’s data—they only give information about its type.

Third, a string constant used as an initializer for an array is not converted
to a pointer—rather, the declaration copies the contents of that string in that
one special case.

You can copy the contents of an array, just not with an assignment oper-
ator. You can do it by calling the library function memcpy or memmove (see
Section “Copying and Concatenation” in The GNU C Library Reference
Manual). Also, when a structure contains just an array, you can copy that
structure.

An array itself is an lvalue if it is a declared variable, or part of a structure
or union that is an lvalue. When you construct an array from elements (see
Section 16.8 [Constructing Array Values], page 103), that array is not an
lvalue.

16.7 Multidimensional Arrays
Strictly speaking, all arrays in C are unidimensional. However, you can cre-
ate an array of arrays, which is more or less equivalent to a multidimensional
array. For example,

struct chesspiece *board[8][8];

declares an array of 8 arrays of 8 pointers to struct chesspiece. This
data type could represent the state of a chess game. To access one square’s
contents requires two array index operations, one for each dimension. For
instance, you can write board[row][column], assuming row and column are
variables with integer values in the proper range.

How does C understand board[row][column]? First of all, board is
converted automatically to a pointer to the zeroth element (at index zero)
of board. Adding row to that makes it point to the desired element. Thus,
board[row]’s value is an element of board—an array of 8 pointers.

Chapter 16: Arrays 102

However, as an expression with array type, it is converted automatically
to a pointer to the array’s zeroth element. The second array index operation,
[column], accesses the chosen element from that array.

As this shows, pointer-to-array types are meaningful in C. You can de-
clare a variable that points to a row in a chess board like this:

struct chesspiece *(*rowptr)[8];

This points to an array of 8 pointers to struct chesspiece. You can assign
to it as follows:

rowptr = &board[5];

The dimensions don’t have to be equal in length. Here we declare
statepop as an array to hold the population of each state in the United
States for each year since 1900:

#define NSTATES 50
{

int nyears = current_year - 1900 + 1;
int statepop[NSTATES][nyears];
. . .

}

The variable statepop is an array of NSTATES subarrays, each indexed
by the year (counting from 1900). Thus, to get the element for a particular
state and year, we must subscript it first by the number that indicates the
state, and second by the index for the year:

statepop[state][year - 1900]

The subarrays within the multidimensional array are allocated consecu-
tively in memory, and within each subarray, its elements are allocated con-
secutively in memory. The most efficient way to process all the elements in
the array is to scan the last subscript in the innermost loop. This means
consecutive accesses go to consecutive memory locations, which optimizes
use of the processor’s memory cache. For example:

int total = 0;
float average;

for (int state = 0; state < NSTATES, ++state)
{
for (int year = 0; year < nyears; ++year)
{
total += statepop[state][year];

}
}

average = total / nyears;

C’s layout for multidimensional arrays is different from Fortran’s layout.
In Fortran, a multidimensional array is not an array of arrays; rather, mul-
tidimensional arrays are a primitive feature, and it is the first index that

Chapter 16: Arrays 103

varies most rapidly between consecutive memory locations. Thus, the mem-
ory layout of a 50x114 array in C matches that of a 114x50 array in Fortran.

16.8 Constructing Array Values
You can construct an array from elements by writing them inside braces, and
preceding all that with the array type’s designator in parentheses. There is
no need to specify the array length, since the number of elements determines
that. The constructor looks like this:

(elttype[]) { elements };

Here is an example, which constructs an array of string pointers:

(char *[]) { "x", "y", "z" };

That’s equivalent in effect to declaring an array with the same initializer,
like this:

char *array[] = { "x", "y", "z" };

and then using the array.

If all the elements are simple constant expressions, or made up of such,
then the compound literal can be coerced to a pointer to its zeroth ele-
ment and used to initialize a file-scope variable (see Section 20.6 [File-Scope
Variables], page 132), as shown here:

char **foo = (char *[]) { "x", "y", "z" };

The data type of foo is char **, which is a pointer type, not an array
type. The declaration is equivalent to defining and then using an array-type
variable:

char *nameless_array[] = { "x", "y", "z" };
char **foo = &nameless_array[0];

16.9 Arrays of Variable Length
In GNU C, you can declare variable-length arrays like any other arrays, but
with a length that is not a constant expression. The storage is allocated at
the point of declaration and deallocated when the block scope containing
the declaration exits. For example:

#include <stdio.h> /* Defines FILE. */
#include <string.h> /* Declares str. */

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{

char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Chapter 16: Arrays 104

(This uses some standard library functions; see Section “String and Array
Utilities” in The GNU C Library Reference Manual.)

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case it is used in sizeof.

Warning: don’t allocate a variable-length array if the size might be
very large (more than 100,000), or in a recursive function, because that
is likely to cause stack overflow. Allocate the array dynamically instead (see
Section 15.2 [Dynamic Memory Allocation], page 82).

Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; that gives an error message.

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{

. . .
}

As usual, a function argument declared with an array type is really a
pointer to an array that already exists. Calling the function does not allocate
the array, so there’s no particular danger of stack overflow in using this
construct.

To pass the array first and the length afterward, use a forward declaration
in the function’s parameter list (another GNU extension). For example,

struct entry
tester (int len; char data[len][len], int len)
{

. . .
}

The int len before the semicolon is a parameter forward declaration, and
it serves the purpose of making the name len known when the declaration
of data is parsed.

You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the last
one must end with a semicolon, which is followed by the “real” parameter
declarations. Each forward declaration must match a “real” declaration
in parameter name and data type. ISO C11 does not support parameter
forward declarations.

105

17 Enumeration Types

An enumeration type represents a limited set of integer values, each with a
name. It is effectively equivalent to a primitive integer type.

Suppose we have a list of possible emotional states to store in an integer
variable. We can give names to these alternative values with an enumeration:

enum emotion_state { neutral, happy, sad, worried,
calm, nervous };

(Never mind that this is a simplistic way to classify emotional states; it’s
just a code example.)

The names inside the enumeration are called enumerators. The enumera-
tion type defines them as constants, and their values are consecutive integers;
neutral is 0, happy is 1, sad is 2, and so on. Alternatively, you can specify
values for the enumerators explicitly like this:

enum emotion_state { neutral = 2, happy = 5,
sad = 20, worried = 10,
calm = -5, nervous = -300 };

Each enumerator which does not specify a value gets value zero (if it is
at the beginning) or the next consecutive integer.

/* neutral is 0 by default,
and worried is 21 by default. */

enum emotion_state { neutral,
happy = 5, sad = 20, worried,
calm = -5, nervous = -300 };

If an enumerator is obsolete, you can specify that using it should cause a
warning, by including an attribute in the enumerator’s declaration. Here is
how happy would look with this attribute:

happy __attribute__
((deprecated
("impossible under plutocratic rule")))

= 5,

See Appendix D [Attributes], page 243.

You can declare variables with the enumeration type:

enum emotion_state feelings_now;

In the C code itself, this is equivalent to declaring the variable int. (If
all the enumeration values are positive, it is equivalent to unsigned int.)
However, declaring it with the enumeration type has an advantage in debug-
ging, because GDB knows it should display the current value of the variable
using the corresponding name. If the variable’s type is int, GDB can only
show the value as a number.

The identifier that follows enum is called a type tag since it distinguishes
different enumeration types. Type tags are in a separate name space and
belong to scopes like most other names in C. See Section 15.20 [Type Tags],
page 95, for explanation.

106

You can predeclare an enum type tag like a structure or union type tag,
like this:

enum foo;

The enum type is incomplete until you finish defining it.

You can optionally include a trailing comma at the end of a list of enu-
meration values:

enum emotion_state { neutral, happy, sad, worried,
calm, nervous, };

This is useful in some macro definitions, since it enables you to assemble the
list of enumerators without knowing which one is last. The extra comma
does not change the meaning of the enumeration in any way.

107

18 Defining Typedef Names

You can define a data type keyword as an alias for any type, and then use
the alias syntactically like a built-in type keyword such as int. You do this
using typedef, so these aliases are also called typedef names.

typedef is followed by text that looks just like a variable declaration,
but instead of declaring variables it defines data type keywords.

Here’s how to define fooptr as a typedef alias for the type struct foo
*, then declare x and y as variables with that type:

typedef struct foo *fooptr;

fooptr x, y;

That declaration is equivalent to the following one:

struct foo *x, *y;

You can define a typedef alias for any type. For instance, this makes
frobcount an alias for type int:

typedef int frobcount;

This doesn’t define a new type distinct from int. Rather, frobcount is
another name for the type int. Once the variable is declared, it makes no
difference which name the declaration used.

There is a syntactic difference, however, between frobcount and int: A
typedef name cannot be used with signed, unsigned, long or short. It has
to specify the type all by itself. So you can’t write this:

unsigned frobcount f1; /* Error! */

But you can write this:

typedef unsigned int unsigned_frobcount;

unsigned_frobcount f1;

In other words, a typedef name is not an alias for a keyword such as int.
It stands for a type, and that could be the type int.

Typedef names are in the same namespace as functions and variables, so
you can’t use the same name for a typedef and a function, or a typedef and
a variable. When a typedef is declared inside a code block, it is in scope
only in that block.

Warning: Avoid defining typedef names that end in ‘_t’, because many
of these have standard meanings.

You can redefine a typedef name to the exact same type as its first def-
inition, but you cannot redefine a typedef name to a different type, even if
the two types are compatible. For example, this is valid:

typedef int frobcount;
typedef int frotzcount;
typedef frotzcount frobcount;
typedef frobcount frotzcount;

108

because each typedef name is always defined with the same type (int), but
this is not valid:

enum foo {f1, f2, f3};
typedef enum foo frobcount;
typedef int frobcount;

Even though the type enum foo is compatible with int, they are not the
same type.

109

19 Statements

A statement specifies computations to be done for effect; it does not produce
a value, as an expression would. In general a statement ends with a semicolon
(‘;’), but blocks (which are statements, more or less) are an exception to that
rule.

The places to use statements are inside a block, and inside a complex
statement. A complex statement contains one or two components that are
nested statements. Each such component must consist of one and only one
statement. The way to put multiple statements in such a component is to
group them into a block (see Section 19.4 [Blocks], page 110), which counts
as one statement.

The following sections describe the various kinds of statement.

19.1 Expression Statement
The most common kind of statement in C is an expression statement. It
consists of an expression followed by a semicolon. The expression’s value is
discarded, so the expressions that are useful are those that have side effects:
assignment expressions, increment and decrement expressions, and function
calls. Here are examples of expression statements:

x = 5; /* Assignment expression. */

p++; /* Increment expression. */

printf ("Done\n"); /* Function call expression. */

p; / Cause SIGSEGV signal if p is null. */

x + y; /* Useless statement without effect. */

In very unusual circumstances we use an expression statement whose
purpose is to get a fault if an address is invalid:

volatile char *p;

. . .
p; / Cause signal if p is null. */

If the target of p is not declared volatile, the compiler might optimize
away the memory access, since it knows that the value isn’t really used. See
Section 21.2 [volatile], page 137.

19.2 if Statement
An if statement computes an expression to decide whether to execute the
following statement or not. It looks like this:

if (condition)
execute-if-true

The first thing this does is compute the value of condition. If that is
true (nonzero), then it executes the statement execute-if-true. If the value
of condition is false (zero), it doesn’t execute execute-if-true; instead, it does
nothing.

Chapter 19: Statements 110

This is a complex statement because it contains a component if-true-
substatement that is a nested statement. It must be one and only one
statement. The way to put multiple statements there is to group them into
a block (see Section 19.4 [Blocks], page 110).

19.3 if-else Statement
An if-else statement computes an expression to decide which of two nested
statements to execute. It looks like this:

if (condition)
if-true-substatement

else
if-false-substatement

The first thing this does is compute the value of condition. If that is
true (nonzero), then it executes the statement if-true-substatement. If the
value of condition is false (zero), then it executes the statement if-false-
substatement instead.

This is a complex statement because it contains components if-true-
substatement and if-else-substatement that are nested statements. Each
must be one and only one statement. The way to put multiple statements in
such a component is to group them into a block (see Section 19.4 [Blocks],
page 110).

19.4 Blocks
A block is a construct that contains multiple statements of any kind. It
begins with ‘{’ and ends with ‘}’, and has a series of statements and decla-
rations in between. Another name for blocks is compound statements.

Is a block a statement? Yes and no. It doesn’t look like a normal
statement—it does not end with a semicolon. But you can use it like a
statement; anywhere that a statement is required or allowed, you can write
a block and consider that block a statement.

So far it seems that a block is a kind of statement with an unusual syntax.
But that is not entirely true: a function body is also a block, and that block
is definitely not a statement. The text after a function header is not treated
as a statement; only a function body is allowed there, and nothing else would
be meaningful there.

In a formal grammar we would have to choose—either a block is a kind of
statement or it is not. But this manual is meant for humans, not for parser
generators. The clearest answer for humans is, “a block is a statement, in
some ways.”

A block that isn’t a function body is called an internal block or a nested
block. You can put a nested block directly inside another block, but more
often the nested block is inside some complex statement, such as a for
statement or an if statement.

Chapter 19: Statements 111

There are two uses for nested blocks in C:

• To specify the scope for local declarations. For instance, a local vari-
able’s scope is the rest of the innermost containing block.

• To write a series of statements where, syntactically, one statement is
called for. For instance, the execute-if-true of an if statement is one
statement. To put multiple statements there, they have to be wrapped
in a block, like this:

if (x < 0)
{
printf ("x was negative\n");
x = -x;

}

This example (repeated from above) shows a nested block which serves
both purposes: it includes two statements (plus a declaration) in the body
of a while statement, and it provides the scope for the declaration of q.

void
free_intlist (struct intlistlink *p)
{

while (p)
{
struct intlistlink *q = p;
p = p->next;
free (q);

}
}

19.5 return Statement
The return statement makes the containing function return immediately.
It has two forms. This one specifies no value to return:

return;

That form is meant for functions whose return type is void (see Section 11.4
[The Void Type], page 55). You can also use it in a function that returns
nonvoid data, but that’s a bad idea, since it makes the function return
garbage.

The form that specifies a value looks like this:

return value;

which computes the expression value and makes the function return that.
If necessary, the value undergoes type conversion to the function’s declared
return value type, which works like assigning the value to a variable of that
type.

Chapter 19: Statements 112

19.6 Loop Statements
You can use a loop statement when you need to execute a series of statements
repeatedly, making an iteration. C provides several different kinds of loop
statements, described in the following subsections.

Every kind of loop statement is a complex statement because contains a
component, here called body, which is a nested statement. Most often the
body is a block.

19.6.1 while Statement

The while statement is the simplest loop construct. It looks like this:

while (test)
body

Here, body is a statement (often a nested block) to repeat, and test is
the test expression that controls whether to repeat it again. Each iteration
of the loop starts by computing test and, if it is true (nonzero), that means
the loop should execute body again and then start over.

Here’s an example of advancing to the last structure in a chain of struc-
tures chained through the next field:

#include <stddef.h> /* Defines NULL. */
. . .
while (chain->next != NULL)

chain = chain->next;

This code assumes the chain isn’t empty to start with; if the chain is empty
(that is, if chain is a null pointer), the code gets a SIGSEGV signal trying to
dereference that null pointer (see Appendix E [Signals], page 245).

19.6.2 do-while Statement

The do–while statement is a simple loop construct that performs the test
at the end of the iteration.

do
body

while (test);

Here, body is a statement (possibly a block) to repeat, and test is an
expression that controls whether to repeat it again.

Each iteration of the loop starts by executing body. Then it computes
test and, if it is true (nonzero), that means to go back and start over with
body. If test is false (zero), then the loop stops repeating and execution
moves on past it.

19.6.3 break Statement

The break statement looks like ‘break;’. Its effect is to exit immediately
from the innermost loop construct or switch statement (see Section 19.7
[switch Statement], page 117).

Chapter 19: Statements 113

For example, this loop advances p until the next null character or newline.

while (*p)
{
/* End loop if we have reached a newline. */
if (*p == ’\n’)
break;

p++
}

When there are nested loops, the break statement exits from the inner-
most loop containing it.

struct list_if_tuples
{

struct list_if_tuples next;
int length;
data *contents;

};

void
process_all_elements (struct list_if_tuples *list)
{

while (list)
{
/* Process all the elements in this node’s vector,

stopping when we reach one that is null. */
for (i = 0; i < list->length; i++

{
/* Null element terminates this node’s vector. */
if (list->contents[i] == NULL)

/* Exit the for loop. */
break;

/* Operate on the next element. */
process_element (list->contents[i]);

}

list = list->next;
}

}

The only way in C to exit from an outer loop is with goto (see
Section 19.12 [goto Statement], page 120).

19.6.4 for Statement

A for statement uses three expressions written inside a parenthetical group
to define the repetition of the loop. The first expression says how to pre-
pare to start the loop. The second says how to test, before each iteration,

Chapter 19: Statements 114

whether to continue looping. The third says how to advance, at the end of
an iteration, for the next iteration. All together, it looks like this:

for (start; continue-test; advance)
body

The first thing the for statement does is compute start. The next thing
it does is compute the expression continue-test. If that expression is false
(zero), the for statement finishes immediately, so body is executed zero
times.

However, if continue-test is true (nonzero), the for statement executes
body, then advance. Then it loops back to the not-quite-top to test continue-
test again. But it does not compute start again.

19.6.5 Example of for

Here is the for statement from the iterative Fibonacci function:

int i;
for (i = 1; i < n; ++i)

/* If n is 1 or less, the loop runs zero times, */
/* since i < n is false the first time. */
{
/* Now last is fib (i)

and prev is fib (i − 1). */
/* Compute fib (i + 1). */
int next = prev + last;
/* Shift the values down. */
prev = last;
last = next;
/* Now last is fib (i + 1)

and prev is fib (i).
But that won’t stay true for long,
because we are about to increment i. */

}

In this example, start is i = 1, meaning set i to 1. continue-test is i < n,
meaning keep repeating the loop as long as i is less than n. advance is i++,
meaning increment i by 1. The body is a block that contains a declaration
and two statements.

19.6.6 Omitted for-Expressions

A fully-fleshed for statement contains all these parts,

for (start; continue-test; advance)
body

but you can omit any of the three expressions inside the parentheses. The
parentheses and the two semicolons are required syntactically, but the ex-
pressions between them may be missing. A missing expression means this
loop doesn’t use that particular feature of the for statement.

Chapter 19: Statements 115

Instead of using start, you can do the loop preparation before the for
statement: the effect is the same. So we could have written the beginning
of the previous example this way:

int i = 0;
for (; i < n; ++i)

instead of this way:

int i;
for (i = 0; i < n; ++i)

Omitting continue-test means the loop runs forever (or until something
else causes exit from it). Statements inside the loop can test conditions for
termination and use ‘break;’ to exit. This is more flexible since you can put
those tests anywhere in the loop, not solely at the beginning.

Putting an expression in advance is almost equivalent to writing it at the
end of the loop body; it does almost the same thing. The only difference is for
the continue statement (see Section 19.6.8 [continue Statement], page 116).
So we could have written this:

for (i = 0; i < n;)
{

. . .
++i;

}

instead of this:

for (i = 0; i < n; ++i)
{

. . .
}

The choice is mainly a matter of what is more readable for programmers.
However, there is also a syntactic difference: advance is an expression, not
a statement. It can’t include loops, blocks, declarations, etc.

19.6.7 for-Index Declarations

You can declare loop-index variables directly in the start portion of the
for-loop, like this:

for (int i = 0; i < n; ++i)
{

. . .
}

This kind of start is limited to a single declaration; it can declare one or
more variables, separated by commas, all of which are the same basetype
(int, in this example):

for (int i = 0, j = 1, *p = NULL; i < n; ++i, ++j, ++p)
{

. . .

Chapter 19: Statements 116

}

The scope of these variables is the for statement as a whole. See Section 20.1
[Variable Declarations], page 127, for a explanation of basetype.

Variables declared in for statements should have initializers. Omitting
the initialization gives the variables unpredictable initial values, so this code
is erroneous.

for (int i; i < n; ++i)
{

. . .
}

19.6.8 continue Statement

The continue statement looks like ‘continue;’, and its effect is to jump
immediately to the end of the innermost loop construct. If it is a for-loop,
the next thing that happens is to execute the loop’s advance expression.

For example, this loop increments p until the next null character or new-
line, and operates (in some way not shown) on all the characters in the line
except for spaces. All it does with spaces is skip them.

for (;*p; ++p)
{
/* End loop if we have reached a newline. */
if (*p == ’\n’)
break;

/* Pay no attention to spaces. */
if (*p == ’ ’)
continue;

/* Operate on the next character. */
. . .

}

Executing ‘continue;’ skips the loop body but it does not skip the advance
expression, p++.

We could also write it like this:

for (;*p; ++p)
{
/* Exit if we have reached a newline. */
if (*p == ’\n’)
break;

/* Pay no attention to spaces. */
if (*p != ’ ’)
{
/* Operate on the next character. */
. . .

}
}

Chapter 19: Statements 117

The advantage of using continue is that it reduces the depth of nesting.

Contrast continue with the break statement. See Section 19.6.3 [break
Statement], page 112.

19.7 switch Statement
The switch statement selects code to run according to the value of an ex-
pression. The expression, in parentheses, follows the keyword switch. After
that come all the cases to select among, inside braces. It looks like this:

switch (selector)
{
cases. . .

}

A case can look like this:

case value:
statements
break;

which means “come here if selector happens to have the value value,” or like
this (a GNU C extension):

case rangestart ... rangeend:
statements
break;

which means “come here if selector happens to have a value between ranges-
tart and rangeend (inclusive).” See Section 19.10 [Case Ranges], page 120.

The values in case labels must reduce to integer constants. They can use
arithmetic, and enum constants, but they cannot refer to data in memory,
because they have to be computed at compile time. It is an error if two case
labels specify the same value, or ranges that overlap, or if one is a range and
the other is a value in that range.

You can also define a default case to handle “any other value,” like this:

default:
statements
break;

If the switch statement has no default: label, then it does nothing
when the value matches none of the cases.

The brace-group inside the switch statement is a block, and you can
declare variables with that scope just as in any other block (see Section 19.4
[Blocks], page 110). However, initializers in these declarations won’t nec-
essarily be executed every time the switch statement runs, so it is best to
avoid giving them initializers.

break; inside a switch statement exits immediately from the switch
statement. See Section 19.6.3 [break Statement], page 112.

If there is no break; at the end of the code for a case, execution continues
into the code for the following case. This happens more often by mistake

Chapter 19: Statements 118

than intentionally, but since this feature is used in real code, we cannot
eliminate it.

Warning: When one case is intended to fall through to the next, write
a comment like ‘falls through’ to say it’s intentional. That way, other
programmers won’t assume it was an error and “fix” it erroneously.

Consecutive case statements could, pedantically, be considered an in-
stance of falling through, but we don’t consider or treat them that way
because they won’t confuse anyone.

19.8 Example of switch
Here’s an example of using the switch statement to distinguish among char-
acters:

struct vp { int vowels, punct; };

struct vp
count_vowels_and_punct (char *string)
{

int c;
int vowels = 0;
int punct = 0;
/* Don’t change the parameter itself. */
/* That helps in debugging. */
char *p = string;
struct vp value;

while (c = *p++)
switch (c)
{

case ’y’:
case ’Y’:
/* We assume y_is_consonant will check surrounding
letters to determine whether this y is a vowel. */
if (y_is_consonant (p - 1))

break;

/* Falls through */

case ’a’:
case ’e’:
case ’i’:
case ’o’:
case ’u’:
case ’A’:
case ’E’:

Chapter 19: Statements 119

case ’I’:
case ’O’:
case ’U’:
vowels++;
break;

case ’.’:
case ’,’:
case ’:’:
case ’;’:
case ’?’:
case ’!’:
case ’\"’:
case ’\’’:
punct++;
break;

}

value.vowels = vowels;
value.punct = punct;

return value;
}

19.9 Duff’s Device
The cases in a switch statement can be inside other control constructs. For
instance, we can use a technique known as Duff’s device to optimize this
simple function,

void
copy (char *to, char *from, int count)
{

while (count > 0)
*to++ = *from++, count--;

}

which copies memory starting at from to memory starting at to.

Duff’s device involves unrolling the loop so that it copies several charac-
ters each time around, and using a switch statement to enter the loop body
at the proper point:

void
copy (char *to, char *from, int count)
{

if (count <= 0)
return;

int n = (count + 7) / 8;

Chapter 19: Statements 120

switch (count % 8)
{
do {
case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;
} while (--n > 0);

}
}

19.10 Case Ranges
You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one
for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful: with integers, write spaces around the ... to prevent it from
being parsed wrong. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

19.11 Null Statement
A null statement is just a semicolon. It does nothing.

A null statement is a placeholder for use where a statement is grammat-
ically required, but there is nothing to be done. For instance, sometimes all
the work of a for-loop is done in the for-header itself, leaving no work for
the body. Here is an example that searches for the first newline in array:

for (p = array; *p != ’\n’; p++)
;

19.12 goto Statement and Labels
The goto statement looks like this:

goto label;

Chapter 19: Statements 121

Its effect is to transfer control immediately to another part of the current
function—where the label named label is defined.

An ordinary label definition looks like this:

label:

and it can appear before any statement. You can’t use default as a label,
since that has a special meaning for switch statements.

An ordinary label doesn’t need a separate declaration; defining it is
enough.

Here’s an example of using goto to implement a loop equivalent to do–
while:

{
loop_restart:
body
if (condition)
goto loop_restart;

}

The name space of labels is separate from that of variables and functions.
Thus, there is no error in using a single name in both ways:

{
int foo; // Variable foo.

foo: // Label foo.
body
if (foo > 0) // Variable foo.
goto foo; // Label foo.

}

Blocks have no effect on ordinary labels; each label name is defined
throughout the whole of the function it appears in. It looks strange to
jump into a block with goto, but it works. For example,

if (x < 0)
goto negative;

if (y < 0)
{
negative:
printf ("Negative\n");
return;

}

If the goto jumps into the scope of a variable, it does not initialize the
variable. For example, if x is negative,

if (x < 0)
goto negative;

if (y < 0)
{
int i = 5;
negative:

Chapter 19: Statements 122

printf ("Negative, and i is %d\n", i);
return;

}

prints junk because i was not initialized.

If the block declares a variable-length automatic array, jumping into it
gives a compilation error. However, jumping out of the scope of a variable-
length array works fine, and deallocates its storage.

A label can’t come directly before a declaration, so the code can’t jump
directly to one. For example, this is not allowed:

{
goto foo;

foo:
int x = 5;
bar(&x);

}

The workaround is to add a statement, even an empty statement, directly
after the label. For example:

{
goto foo;

foo:
;
int x = 5;
bar(&x);

}

Likewise, a label can’t be the last thing in a block. The workaround
solution is the same: add a semicolon after the label.

These unnecessary restrictions on labels make no sense, and ought in
principle to be removed; but they do only a little harm since labels and goto
are rarely the best way to write a program.

These examples are all artificial; it would be more natural to write them in
other ways, without goto. For instance, the clean way to write the example
that prints ‘Negative’ is this:

if (x < 0 || y < 0)
{
printf ("Negative\n");
return;

}

It is hard to construct simple examples where goto is actually the best way
to write a program. Its rare good uses tend to be in complex code, thus not
apt for the purpose of explaining the meaning of goto.

The only good time to use goto is when it makes the code simpler than
any alternative. Jumping backward is rarely desirable, because usually the
other looping and control constructs give simpler code. Using goto to jump
forward is more often desirable, for instance when a function needs to do

Chapter 19: Statements 123

some processing in an error case and errors can occur at various different
places within the function.

19.13 Locally Declared Labels
In GNU C you can declare local labels in any nested block scope. A local
label is used in a goto statement just like an ordinary label, but you can
only reference it within the block in which it was declared.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, . . .;

Local label declarations must come at the beginning of the block, before
any ordinary declarations or statements.

The label declaration declares the label name, but does not define the
label itself. That’s done in the usual way, with label:, before one of the
statements in the block.

The local label feature is useful for complex macros. If a macro contains
nested loops, a goto can be useful for breaking out of them. However, an
ordinary label whose scope is the whole function cannot be used: if the macro
can be expanded several times in one function, the label will be multiply
defined in that function. A local label avoids this problem. For example:

#define SEARCH(value, array, target) \
do { \

__label__ found; \
__auto_type _SEARCH_target = (target); \
__auto_type _SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \

{ (value) = i; goto found; } \
(value) = -1; \

found:; \
} while (0)

This could also be written using a statement expression (see Section 19.15
[Statement Exprs], page 125):

#define SEARCH(array, target) \
({ \

__label__ found; \
__auto_type _SEARCH_target = (target); \
__auto_type _SEARCH_array = (array); \
int i, j; \

Chapter 19: Statements 124

int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \

value = -1; \
found: \
value; \

})

Ordinary labels are visible throughout the function where they are de-
fined, and only in that function. However, explicitly declared local labels
of a block are visible in nested functions declared within that block. See
Section 22.7.3 [Nested Functions], page 157, for details.

See Section 19.12 [goto Statement], page 120.

19.14 Labels as Values
In GNU C, you can get the address of a label defined in the current function
(or a local label defined in the containing function) with the unary operator
‘&&’. The value has type void *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

void *ptr;
. . .
ptr = &&foo;

To use these values requires a way to jump to one. This is done with the
computed goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

See Section 19.12 [goto Statement], page 120.

19.14.1 Label Value Uses

One use for label-valued constants is to initialize a static array to serve as a
jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds—array
indexing in C never checks that.

You can make the table entries offsets instead of addresses by subtracting
one label from the others. Here is an example:

1 The analogous feature in Fortran is called an assigned goto, but that name seems
inappropriate in C, since you can do more with label addresses than store them in
special label variables.

Chapter 19: Statements 125

static const int array[] = { &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo };

goto *(&&foo + array[i]);

Using offsets is preferable in shared libraries, as it avoids the need for dy-
namic relocation of the array elements; therefore, the array can be read-only.

An array of label values or offsets serves a purpose much like that of
the switch statement. The switch statement is cleaner, so use switch by
preference when feasible.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded code for
super-fast dispatching.

19.14.2 Label Value Caveats

Jumping to a label defined in another function does not work. It can cause
unpredictable results.

The best way to avoid this is to store label values only in automatic
variables, or static variables whose names are declared within the function.
Never pass them as arguments.

An optimization known as cloning generates multiple simplified variants
of a function’s code, for use with specific fixed arguments. Using label values
in certain ways, such as saving the address in one call to the function and
using it again in another call, would make cloning give incorrect results.
These functions must disable cloning.

Inlining calls to the function would also result in multiple copies of the
code, each with its own value of the same label. Using the label in a com-
puted goto is no problem, because the computed goto inhibits inlining. How-
ever, using the label value in some other way, such as an indication of where
an error occurred, would be optimized wrong. These functions must disable
inlining.

To prevent inlining or cloning of a function, specify __attribute__((__
noinline__,__noclone__)) in its definition. See Appendix D [Attributes],
page 243.

When a function uses a label value in a static variable initializer, that
automatically prevents inlining or cloning the function.

19.15 Statements and Declarations in Expressions
A block enclosed in parentheses can be used as an expression in GNU C.
This provides a way to use local variables, loops and switches within an
expression. We call it a statement expression.

Recall that a block is a sequence of statements surrounded by braces. In
this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;

Chapter 19: Statements 126

else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the
absolute value of foo ().

The last statement in the block should be an expression statement; an
expression followed by a semicolon, that is. The value of this expression
serves as the value of statement expression. If the last statement is anything
else, the statement expression’s value is void.

This feature is mainly useful in making macro definitions compute each
operand exactly once. See Section 26.5.10.5 [Macros and Auto Type],
page 195.

Statement expressions are not allowed in expressions that must be con-
stant, such as the value for an enumerator, the width of a bit-field, or the
initial value of a static variable.

Jumping into a statement expression—with goto, or using a switch state-
ment outside the statement expression—is an error. With a computed goto
(see Section 19.14 [Labels as Values], page 124), the compiler can’t detect
the error, but it still won’t work.

Jumping out of a statement expression is permitted, but since subexpres-
sions in C are not computed in a strict order, it is unpredictable which other
subexpressions will have been computed by then. For example,

foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();

calls foo and bar1 before it jumps, and never calls baz, but may or may not
call bar2. If bar2 does get called, that occurs after foo and before bar1.

127

20 Variables

Every variable used in a C program needs to be made known by a declaration.
It can be used only after it has been declared. It is an error to declare a
variable name more than once in the same scope; an exception is that extern
declarations and tentative definitions can coexist with another declaration
of the same variable.

Variables can be declared anywhere within a block or file. (Older versions
of C required that all variable declarations within a block occur before any
statements.)

Variables declared within a function or block are local to it. This means
that the variable name is visible only until the end of that function or block,
and the memory space is allocated only while control is within it.

Variables declared at the top level in a file are called file-scope. They are
assigned fixed, distinct memory locations, so they retain their values for the
whole execution of the program.

20.1 Variable Declarations
Here’s what a variable declaration looks like:

keywords basetype decorated-variable [= init];

The keywords specify how to handle the scope of the variable name and
the allocation of its storage. Most declarations have no keywords because
the defaults are right for them.

C allows these keywords to come before or after basetype, or even in
the middle of it as in unsigned static int, but don’t do that—it would
surprise other programmers. Always write the keywords first.

The basetype can be any of the predefined types of C, or a type keyword
defined with typedef. It can also be struct tag, union tag, or enum tag.
In addition, it can include type qualifiers such as const and volatile (see
Chapter 21 [Type Qualifiers], page 136).

In the simplest case, decorated-variable is just the variable name. That
declares the variable with the type specified by basetype. For instance,

int foo;

uses int as the basetype and foo as the decorated-variable. It declares foo
with type int.

struct tree_node foo;

declares foo with type struct tree_node.

20.1.1 Declaring Arrays and Pointers

To declare a variable that is an array, write variable[length] for
decorated-variable:

int foo[5];

Chapter 20: Variables 128

To declare a variable that has a pointer type, write *variable for
decorated-variable:

struct list_elt *foo;

These constructs nest. For instance,

int foo[3][5];

declares foo as an array of 3 arrays of 5 integers each,

struct list_elt *foo[5];

declares foo as an array of 5 pointers to structures, and

struct list_elt **foo;

declares foo as a pointer to a pointer to a structure.

int **(*foo[30])(int, double);

declares foo as an array of 30 pointers to functions (see Section 22.5 [Func-
tion Pointers], page 149), each of which must accept two arguments (one int
and one double) and return type int **.

void
bar (int size)
{

int foo[size];
. . .

}

declares foo as an array of integers with a size specified at run time when
the function bar is called.

20.1.2 Combining Variable Declarations

When multiple declarations have the same keywords and basetype, you can
combine them using commas. Thus,

keywords basetype
decorated-variable-1 [= init1],
decorated-variable-2 [= init2];

is equivalent to

keywords basetype
decorated-variable-1 [= init1];

keywords basetype
decorated-variable-2 [= init2];

Here are some simple examples:

int a, b;
int a = 1, b = 2;
int a, *p, array[5];
int a = 0, *p = &a, array[5] = {1, 2};

In the last two examples, a is an int, p is a pointer to int, and array is an
array of 5 ints. Since the initializer for array specifies only two elements,
the other three elements are initialized to zero.

Chapter 20: Variables 129

20.2 Initializers
A variable’s declaration, unless it is extern, should also specify its initial
value. For numeric and pointer-type variables, the initializer is an expression
for the value. If necessary, it is converted to the variable’s type, just as in
an assignment.

You can also initialize a local structure-type (see Chapter 15 [Structures],
page 80) or local union-type (see Section 15.13 [Unions], page 89) variable
this way, from an expression whose value has the same type. But you can’t
initialize an array this way (see Chapter 16 [Arrays], page 97), since arrays
are not first-class objects in C (see Section 16.6 [Limitations of C Arrays],
page 100) and there is no array assignment.

You can initialize arrays and structures componentwise, with a list of
the elements or components. You can initialize a union with any one of its
alternatives.

• A component-wise initializer for an array consists of element values sur-
rounded by ‘{. . .}’. If the values in the initializer don’t cover all the
elements in the array, the remaining elements are initialized to zero.

You can omit the size of the array when you declare it, and let the
initializer specify the size:

int array[] = { 3, 9, 12 };

• A component-wise initializer for a structure consists of field values sur-
rounded by ‘{. . .}’. Write the field values in the same order as the fields
are declared in the structure. If the values in the initializer don’t cover
all the fields in the structure, the remaining fields are initialized to zero.

• The initializer for a union-type variable has the form { value }, where
value initializes the first alternative in the union definition.

For an array of arrays, a structure containing arrays, an array of struc-
tures, etc., you can nest these constructs. For example,

struct point { double x, y; };

struct point series[]
= { {0, 0}, {1.5, 2.8}, {99, 100.0004} };

You can omit a pair of inner braces if they contain the right number of
elements for the sub-value they initialize, so that no elements or fields need
to be filled in with zeros. But don’t do that very much, as it gets confusing.

An array of char can be initialized using a string constant. Recall that the
string constant includes an implicit null character at the end (see Section 12.7
[String Constants], page 61). Using a string constant as initializer means to
use its contents as the initial values of the array elements. Here are examples:

char text[6] = "text!"; /* Includes the null. */
char text[5] = "text!"; /* Excludes the null. */
char text[] = "text!"; /* Gets length 6. */
char text[]

Chapter 20: Variables 130

= { ’t’, ’e’, ’x’, ’t’, ’!’, 0 }; /* same as above. */
char text[] = { "text!" }; /* Braces are optional. */

and this kind of initializer can be nested inside braces to initialize structures
or arrays that contain a char-array.

In like manner, you can use a wide string constant to initialize an array
of wchar_t.

20.3 Designated Initializers
In a complex structure or long array, it’s useful to indicate which field or
element we are initializing.

To designate specific array elements during initialization, include the ar-
ray index in brackets, and an assignment operator, for each element:

int foo[10] = { [3] = 42, [7] = 58 };

This does the same thing as:

int foo[10] = { 0, 0, 0, 42, 0, 0, 0, 58, 0, 0 };

The array initialization can include non-designated element values along-
side designated indices; these follow the expected ordering of the array ini-
tialization, so that

int foo[10] = { [3] = 42, 43, 44, [7] = 58 };

does the same thing as:

int foo[10] = { 0, 0, 0, 42, 43, 44, 0, 58, 0, 0 };

Note that you can only use constant expressions as array index values,
not variables.

If you need to initialize a subsequence of sequential array elements to the
same value, you can specify a range:

int foo[100] = { [0 ... 19] = 42, [20 ... 99] = 43 };

Using a range this way is a GNU C extension.

When subsequence ranges overlap, each element is initialized by the last
specification that applies to it. Thus, this initialization is equivalent to the
previous one.

int foo[100] = { [0 ... 99] = 43, [0 ... 19] = 42 };

as the second overrides the first for elements 0 through 19.

The value used to initialize a range of elements is evaluated only once,
for the first element in the range. So for example, this code

int random_values[100]
= { [0 ... 99] = get_random_number() };

would initialize all 100 elements of the array random_values to the same
value—probably not what is intended.

Similarly, you can initialize specific fields of a structure variable by spec-
ifying the field name prefixed with a dot:

struct point { int x; int y; };

Chapter 20: Variables 131

struct point foo = { .y = 42; };

The same syntax works for union variables as well:

union int_double { int i; double d; };

union int_double foo = { .d = 34 };

This casts the integer value 34 to a double and stores it in the union variable
foo.

You can designate both array elements and structure elements in the
same initialization; for example, here’s an array of point structures:

struct point point_array[10] = { [4].y = 32, [6].y = 39 };

Along with the capability to specify particular array and structure ele-
ments to initialize comes the possibility of initializing the same element more
than once:

int foo[10] = { [4] = 42, [4] = 98 };

In such a case, the last initialization value is retained.

20.4 Referring to a Type with __auto_type

You can declare a variable copying the type from the initializer by using
__auto_type instead of a particular type. Here’s an example:

#define max(a,b) \
({ __auto_type _a = (a); \

__auto_type _b = (b); \
_a > _b ? _a : _b })

This defines _a to be of the same type as a, and _b to be of the same type
as b. This is a useful thing to do in a macro that ought to be able to handle
any type of data (see Section 26.5.10.5 [Macros and Auto Type], page 195).

The original GNU C method for obtaining the type of a value is to use
typeof, which takes as an argument either a value or the name of a type.
The previous example could also be written as:

#define max(a,b) \
({ typeof(a) _a = (a); \

typeof(b) _b = (b); \
_a > _b ? _a : _b })

typeof is more flexible than __auto_type; however, the principal use
case for typeof is in variable declarations with initialization, which is exactly
what __auto_type handles.

20.5 Local Variables
Declaring a variable inside a function definition (see Section 22.1 [Func-
tion Definitions], page 141) makes the variable name local to the containing
block—that is, the containing pair of braces. More precisely, the variable’s

Chapter 20: Variables 132

name is visible starting just after where it appears in the declaration, and
its visibility continues until the end of the block.

Local variables in C are generally automatic variables: each variable’s
storage exists only from the declaration to the end of the block. Execution
of the declaration allocates the storage, computes the initial value, and stores
it in the variable. The end of the block deallocates the storage.1

Warning: Two declarations for the same local variable in the same scope
are an error.

Warning: Automatic variables are stored in the run-time stack. The total
space for the program’s stack may be limited; therefore, in using very large
arrays, it may be necessary to allocate them in some other way to stop the
program from crashing.

Warning: If the declaration of an automatic variable does not specify an
initial value, the variable starts out containing garbage. In this example, the
value printed could be anything at all:

{
int i;

printf ("Print junk %d\n", i);
}

In a simple test program, that statement is likely to print 0, simply
because every process starts with memory zeroed. But don’t rely on it to be
zero—that is erroneous.

Note: Make sure to store a value into each local variable (by assignment,
or by initialization) before referring to its value.

20.6 File-Scope Variables
A variable declaration at the top level in a file (not inside a function defini-
tion) declares a file-scope variable. Loading a program allocates the storage
for all the file-scope variables in it, and initializes them too.

Each file-scope variable is either static (limited to one compilation mod-
ule) or global (shared with all compilation modules in the program). To
make the variable static, write the keyword static at the start of the dec-
laration. Omitting static makes the variable global.

The initial value for a file-scope variable can’t depend on the contents of
storage, and can’t call any functions.

int foo = 5; /* Valid. */
int bar = foo; /* Invalid! */
int bar = sin (1.0); /* Invalid! */

But it can use the address of another file-scope variable:

1 Due to compiler optimizations, allocation and deallocation don’t necessarily really
happen at those times.

Chapter 20: Variables 133

int foo;
int *bar = &foo; /* Valid. */
int arr[5];
int *bar3 = &arr[3]; /* Valid. */
int *bar4 = arr + 4; /* Valid. */

It is valid for a module to have multiple declarations for a file-scope vari-
able, as long as they are all global or all static, but at most one declaration
can specify an initial value for it.

20.7 Static Local Variables
The keyword static in a local variable declaration says to allocate the
storage for the variable permanently, just like a file-scope variable, even if
the declaration is within a function.

Here’s an example:

int
increment_counter ()
{

static int counter = 0;
return ++counter;

}

The scope of the name counter runs from the declaration to the end of
the containing block, just like an automatic local variable, but its storage is
permanent, so the value persists from one call to the next. As a result, each
call to increment_counter returns a different, unique value.

The initial value of a static local variable has the same limitations as for
file-scope variables: it can’t depend on the contents of storage or call any
functions. It can use the address of a file-scope variable or a static local
variable, because those addresses are determined before the program runs.

20.8 extern Declarations
An extern declaration is used to refer to a global variable whose principal
declaration comes elsewhere—in the same module, or in another compilation
module. It looks like this:

extern basetype decorated-variable;

Its meaning is that, in the current scope, the variable name refers to the
file-scope variable of that name—which needs to be declared in a non-extern,
non-static way somewhere else.

For instance, if one compilation module has this global variable declara-
tion

int error_count = 0;

then other compilation modules can specify this

extern int error_count;

Chapter 20: Variables 134

to allow reference to the same variable.

The usual place to write an extern declaration is at top level in a source
file, but you can write an extern declaration inside a block to make a global
or static file-scope variable accessible in that block.

Since an extern declaration does not allocate space for the variable, it
can omit the size of an array:

extern int array[];

You can use array normally in all contexts where it is converted auto-
matically to a pointer. However, to use it as the operand of sizeof is an
error, since the size is unknown.

It is valid to have multiple extern declarations for the same variable, even
in the same scope, if they give the same type. They do not conflict—they
agree. For an array, it is legitimate for some extern declarations can specify
the size while others omit it. However, if two declarations give different sizes,
that is an error.

Likewise, you can use extern declarations at file scope (see Section 20.6
[File-Scope Variables], page 132) followed by an ordinary global (non-static)
declaration of the same variable. They do not conflict, because they say
compatible things about the same meaning of the variable.

20.9 Allocating File-Scope Variables
Some file-scope declarations allocate space for the variable, and some don’t.

A file-scope declaration with an initial value must allocate space for the
variable; if there are two of such declarations for the same variable, even in
different compilation modules, they conflict.

An extern declaration never allocates space for the variable. If all the
top-level declarations of a certain variable are extern, the variable never
gets memory space. If that variable is used anywhere in the program, the
use will be reported as an error, saying that the variable is not defined.

A file-scope declaration without an initial value is called a tentative def-
inition. This is a strange hybrid: it can allocate space for the variable, but
does not insist. So it causes no conflict, no error, if the variable has an-
other declaration that allocates space for it, perhaps in another compilation
module. But if nothing else allocates space for the variable, the tentative
definition will do it. Any number of compilation modules can declare the
same variable in this way, and that is sufficient for all of them to use the
variable.

In programs that are very large or have many contributors, it may be wise
to adopt the convention of never using tentative definitions. You can use the
compilation option -fno-common to make them an error, or --warn-common
to warn about them.

If a file-scope variable gets its space through a tentative definition, it
starts out containing all zeros.

Chapter 20: Variables 135

20.10 auto and register

For historical reasons, you can write auto or register before a local variable
declaration. auto merely emphasizes that the variable isn’t static; it changes
nothing.

register suggests to the compiler storing this variable in a register. How-
ever, GNU C ignores this suggestion, since it can choose the best variables
to store in registers without any hints.

It is an error to take the address of a variable declared register, so you
cannot use the unary ‘&’ operator on it. If the variable is an array, you can’t
use it at all (other than as the operand of sizeof), which makes it rather
useless.

20.11 Omitting Types in Declarations
The syntax of C traditionally allows omitting the data type in a declaration
if it specifies a storage class, a type qualifier (see the next chapter), or auto
or register. Then the type defaults to int. For example:

auto foo = 42;

This is bad practice; if you see it, fix it.

136

21 Type Qualifiers

A declaration can include type qualifiers to advise the compiler about
how the variable will be used. There are three different qualifiers, const,
volatile and restrict. They pertain to different issues, so you can use
more than one together. For instance, const volatile describes a value
that the program is not allowed to change, but might have a different value
each time the program examines it. (This might perhaps be a special hard-
ware register, or part of shared memory.)

If you are just learning C, you can skip this chapter.

21.1 const Variables and Fields
You can mark a variable as “constant” by writing const in front of the
declaration. This says to treat any assignment to that variable as an error.
It may also permit some compiler optimizations—for instance, to fetch the
value only once to satisfy multiple references to it. The construct looks like
this:

const double pi = 3.14159;

After this definition, the code can use the variable pi but cannot assign
a different value to it.

pi = 3.0; /* Error! */

Simple variables that are constant can be used for the same purposes as
enumeration constants, and they are not limited to integers. The constant-
ness of the variable propagates into pointers, too.

A pointer type can specify that the target is constant. For example,
the pointer type const double * stands for a pointer to a constant double.
That’s the typethat results from taking the address of pi. Such a pointer
can’t be dereferenced in the left side of an assignment.

(&pi) = 3.0; / Error! */

Nonconstant pointers can be converted automatically to constant point-
ers, but not vice versa. For instance,

const double *cptr;
double *ptr;

cptr = π /* Valid. */
cptr = ptr; /* Valid. */
ptr = cptr; /* Error! */
ptr = π /* Error! */

This is not an ironclad protection against modifying the value. You can
always cast the constant pointer to a nonconstant pointer type:

ptr = (double *)cptr; /* Valid. */
ptr = (double *)π /* Valid. */

Chapter 21: Type Qualifiers 137

However, const provides a way to show that a certain function won’t
modify the data structure whose address is passed to it. Here’s an example:

int
string_length (const char *string)
{

int count = 0;
while (*string++)
count++;

return count;
}

Using const char * for the parameter is a way of saying this function never
modifies the memory of the string itself.

In calling string_length, you can specify an ordinary char * since that
can be converted automatically to const char *.

21.2 volatile Variables and Fields
The GNU C compiler often performs optimizations that eliminate the need
to write or read a variable. For instance,

int foo;
foo = 1;
foo++;

might simply store the value 2 into foo, without ever storing 1. These
optimizations can also apply to structure fields in some cases.

If the memory containing foo is shared with another program, or if it
is examined asynchronously by hardware, such optimizations could confuse
the communication. Using volatile is one way to prevent them.

Writing volatile with the type in a variable or field declaration says
that the value may be examined or changed for reasons outside the control
of the program at any moment. Therefore, the program must execute in a
careful way to assure correct interaction with those accesses, whenever they
may occur.

The simplest use looks like this:

volatile int lock;

This directs the compiler not to do certain common optimizations on use
of the variable lock. All the reads and writes for a volatile variable or field
are really done, and done in the order specified by the source code. Thus,
this code:

lock = 1;
list = list->next;
if (lock)

lock_broken (&lock);
lock = 0;

Chapter 21: Type Qualifiers 138

really stores the value 1 in lock, even though there is no sign it is really
used, and the if statement reads and checks the value of lock, rather than
assuming it is still 1.

A limited amount of optimization can be done, in principle, on volatile
variables and fields: multiple references between two sequence points (see
Section 10.3 [Sequence Points], page 47) can be simplified together.

Use of volatile does not eliminate the flexibility in ordering the com-
putation of the operands of most operators. For instance, in lock + foo (),
the order of accessing lock and calling foo is not specified, so they may be
done in either order; the fact that lock is volatile has no effect on that.

21.3 restrict-Qualified Pointers
You can declare a pointer as “restricted” using the restrict type qualifier,
like this:

int *restrict p = x;

This enables better optimization of code that uses the pointer.

If p is declared with restrict, and then the code references the object
that p points to (using *p or p[i]), the restrict declaration promises that
the code will not access that object in any other way—only through p.

For instance, it means the code must not use another pointer to access
the same space, as shown here:

int *restrict p = whatever;
int *q = p;
foo (*p, *q);

That contradicts the restrict promise by accessing the object that p points
to using q, which bypasses p. Likewise, it must not do this:

int *restrict p = whatever;
struct { int *a, *b; } s;
s.a = p;
foo (*p, *s.a);

This example uses a structure field instead of the variable q to hold the other
pointer, and that contradicts the promise just the same.

The keyword restrict also promises that p won’t point to the allocated
space of any automatic or static variable. So the code must not do this:

int a;
int *restrict p = &a;
foo (*p, a);

because that does direct access to the object (a) that p points to, which
bypasses p.

If the code makes such promises with restrict then breaks them, exe-
cution is unpredictable.

Chapter 21: Type Qualifiers 139

21.4 restrict Pointer Example
Here are examples where restrict enables real optimization.

In this example, restrict assures GCC that the array out points to does
not overlap with the array in points to.

void
process_data (const char *in,

char * restrict out,
size_t size)

{
for (i = 0; i < size; i++)
out[i] = in[i] + in[i + 1];

}

Here’s a simple tree structure, where each tree node holds data of type
PAYLOAD plus two subtrees.

struct foo
{
PAYLOAD payload;
struct foo *left;
struct foo *right;

};

Now here’s a function to null out both pointers in the left subtree.

void
null_left (struct foo *a)
{

a->left->left = NULL;
a->left->right = NULL;

}

Since *a and *a->left have the same data type, they could legitimately
alias (see Appendix B [Aliasing], page 238). Therefore, the compiled code
for null_left must read a->left again from memory when executing the
second assignment statement.

We can enable optimization, so that it does not need to read a->left
again, by writing null_left this in a less obvious way.

void
null_left (struct foo *a)
{

struct foo *b = a->left;
b->left = NULL;
b->right = NULL;

}

A more elegant way to fix this is with restrict.

void
null_left (struct foo *restrict a)

140

{
a->left->left = NULL;
a->left->right = NULL;

}

Declaring a as restrict asserts that other pointers such as a->left will
not point to the same memory space as a. Therefore, the memory location
a->left->left cannot be the same memory as a->left. Knowing this, the
compiled code may avoid reloading a->left for the second statement.

141

22 Functions

We have already presented many examples of functions, so if you’ve read
this far, you basically understand the concept of a function. It is vital,
nonetheless, to have a chapter in the manual that collects all the information
about functions.

22.1 Function Definitions
We have already presented many examples of function definitions. To sum-
marize the rules, a function definition looks like this:

returntype
functionname (parm_declarations. . .)
{

body
}

The part before the open-brace is called the function header.

Write void as the returntype if the function does not return a value.

22.1.1 Function Parameter Variables

A function parameter variable is a local variable (see Section 20.5 [Local
Variables], page 131) used within the function to store the value passed as
an argument in a call to the function. Usually we say “function parameter”
or “parameter” for short, not mentioning the fact that it’s a variable.

We declare these variables in the beginning of the function definition, in
the parameter list. For example,

fib (int n)

has a parameter list with one function parameter n, which has type int.

Function parameter declarations differ from ordinary variable declara-
tions in several ways:

• Inside the function definition header, commas separate parameter dec-
larations, and each parameter needs a complete declaration including
the type. For instance, if a function foo has two int parameters, write
this:

foo (int a, int b)

You can’t share the common int between the two declarations:

foo (int a, b) /* Invalid! */

• A function parameter variable is initialized to whatever value is passed
in the function call, so its declaration cannot specify an initial value.

• Writing an array type in a function parameter declaration has the effect
of declaring it as a pointer. The size specified for the array has no effect
at all, and we normally omit the size. Thus,

foo (int a[5])

Chapter 22: Functions 142

foo (int a[])
foo (int *a)

are equivalent.

• The scope of the parameter variables is the entire function body,
notwithstanding the fact that they are written in the function header,
which is just outside the function body.

If a function has no parameters, it would be most natural for the list
of parameters in its definition to be empty. But that, in C, has a special
meaning for historical reasons: “Do not check that calls to this function have
the right number of arguments.” Thus,

int
foo ()
{

return 5;
}

int
bar (int x)
{

return foo (x);
}

would not report a compilation error in passing x as an argument to foo.
By contrast,

int
foo (void)
{

return 5;
}

int
bar (int x)
{

return foo (x);
}

would report an error because foo is supposed to receive no arguments.

22.1.2 Forward Function Declarations

The order of the function definitions in the source code makes no difference,
except that each function needs to be defined or declared before code uses
it.

The definition of a function also declares its name for the rest of the con-
taining scope. But what if you want to call the function before its definition?
To permit that, write a compatible declaration of the same function, before
the first call. A declaration that prefigures a subsequent definition in this

Chapter 22: Functions 143

way is called a forward declaration. The function declaration can be at top
level or within a block, and it applies until the end of the containing scope.

See Section 22.2 [Function Declarations], page 147, for more information
about these declarations.

22.1.3 Static Functions

The keyword static in a function definition limits the visibility of the name
to the current compilation module. (That’s the same thing static does in
variable declarations; see Section 20.6 [File-Scope Variables], page 132.) For
instance, if one compilation module contains this code:

static int
foo (void)
{

. . .
}

then the code of that compilation module can call foo anywhere after the
definition, but other compilation modules cannot refer to it at all.

To call foo before its definition, it needs a forward declaration, which
should use static since the function definition does. For this function, it
looks like this:

static int foo (void);

It is generally wise to use static on the definitions of functions that
won’t be called from outside the same compilation module. This makes sure
that calls are not added in other modules. If programmers decide to change
the function’s calling convention, or understand all the consequences of its
use, they will only have to check for calls in the same compilation module.

22.1.4 Arrays as Parameters

Arrays in C are not first-class objects: it is impossible to copy them. So
they cannot be passed as arguments like other values. See Section 16.6
[Limitations of C Arrays], page 100. Rather, array parameters work in a
special way.

22.1.4.1 Array parameters are pointers

Declaring a function parameter variable as an array really gives it a pointer
type. C does this because an expression with array type, if used as an
argument in a function call, is converted automatically to a pointer (to the
zeroth element of the array). If you declare the corresponding parameter
as an “array”, it will work correctly with the pointer value that really gets
passed.

This relates to the fact that C does not check array bounds in access to
elements of the array (see Section 16.1 [Accessing Array Elements], page 97).

For example, in this function,

void

Chapter 22: Functions 144

clobber4 (int array[20])
{

array[4] = 0;
}

the parameter array’s real type is int *; the specified length, 20, has no
effect on the program. You can leave out the length and write this:

void
clobber4 (int array[])
{

array[4] = 0;
}

or write the parameter declaration explicitly as a pointer:

void
clobber4 (int *array)
{

array[4] = 0;
}

They are all equivalent.

22.1.4.2 Passing array arguments

The function call passes this pointer by value, like all argument values in
C. However, the result is paradoxical in that the array itself is passed by
reference: its contents are treated as shared memory—shared between the
caller and the called function, that is. When clobber4 assigns to element 4
of array, the effect is to alter element 4 of the array specified in the call.

#include <stddef.h> /* Defines NULL. */
#include <stdlib.h> /* Declares malloc, */

/* Defines EXIT_SUCCESS. */

int
main (void)
{

int data[] = {1, 2, 3, 4, 5, 6};
int i;

/* Show the initial value of element 4. */
for (i = 0; i < 6; i++)
printf ("data[%d] = %d\n", i, data[i]);

printf ("\n");

clobber4 (data);

/* Show that element 4 has been changed. */

Chapter 22: Functions 145

for (i = 0; i < 6; i++)
printf ("data[%d] = %d\n", i, data[i]);

printf ("\n");

return EXIT_SUCCESS;
}

shows that data[4] has become zero after the call to clobber4.

The array data has 6 elements, but passing it to a function whose argu-
ment type is written as int [20] is not an error, because that really stands
for int *. The pointer that is the real argument carries no indication of the
length of the array it points into. It is not required to point to the beginning
of the array, either. For instance,

clobber4 (data+1);

passes an “array” that starts at element 1 of data, and the effect is to zero
data[5] instead of data[4].

If all calls to the function will provide an array of a particular size, you
can specify the size of the array to be static:

void
clobber4 (int array[static 20])
. . .

This is a promise to the compiler that the function will always be called with
an array of 20 elements, so that the compiler can optimize code accordingly.
If the code breaks this promise and calls the function with, for example, a
shorter array, unpredictable things may happen.

22.1.4.3 Type qualifiers on array parameters

You can use the type qualifiers const, restrict, and volatile with array
parameters; for example:

void
clobber4 (volatile int array[20])
. . .

denotes that array is equivalent to a pointer to a volatile int. Alternatively:

void
clobber4 (int array[const 20])
. . .

makes the array parameter equivalent to a constant pointer to an int. If we
want the clobber4 function to succeed, it would not make sense to write

void
clobber4 (const int array[20])
. . .

as this would tell the compiler that the parameter should point to an array
of constant int values, and then we would not be able to store zeros in them.

Chapter 22: Functions 146

In a function with multiple array parameters, you can use restrict to
tell the compiler that each array parameter passed in will be distinct:

void
foo (int array1[restrict 10], int array2[restrict 10])
. . .

Using restrict promises the compiler that callers will not pass in the same
array for more than one restrict array parameter. Knowing this enables
the compiler to perform better code optimization. This is the same effect
as using restrict pointers (see Section 21.3 [restrict Pointers], page 138),
but makes it clear when reading the code that an array of a specific size is
expected.

22.1.5 Functions That Accept Structure Arguments

Structures in GNU C are first-class objects, so using them as function pa-
rameters and arguments works in the natural way. This function swapfoo
takes a struct foo with two fields as argument, and returns a structure of
the same type but with the fields exchanged.

struct foo { int a, b; };

struct foo x;

struct foo
swapfoo (struct foo inval)
{

struct foo outval;
outval.a = inval.b;
outval.b = inval.a;
return outval;

}

This simpler definition of swapfoo avoids using a local variable to hold the
result about to be return, by using a structure constructor (see Section 15.16
[Structure Constructors], page 92), like this:

struct foo
swapfoo (struct foo inval)
{

return (struct foo) { inval.b, inval.a };
}

It is valid to define a structure type in a function’s parameter list, as in

int
frob_bar (struct bar { int a, b; } inval)
{

body
}

Chapter 22: Functions 147

and body can access the fields of inval since the structure type struct bar
is defined for the whole function body. However, there is no way to create a
struct bar argument to pass to frob_bar, except with kludges. As a result,
defining a structure type in a parameter list is useless in practice.

22.2 Function Declarations
To call a function, or use its name as a pointer, a function declaration for
the function name must be in effect at that point in the code. The function’s
definition serves as a declaration of that function for the rest of the containing
scope, but to use the function in code before the definition, or from another
compilation module, a separate function declaration must precede the use.

A function declaration looks like the start of a function definition. It
begins with the return value type (void if none) and the function name, fol-
lowed by argument declarations in parentheses (though these can sometimes
be omitted). But that’s as far as the similarity goes: instead of the function
body, the declaration uses a semicolon.

A declaration that specifies argument types is called a function prototype.
You can include the argument names or omit them. The names, if included
in the declaration, have no effect, but they may serve as documentation.

This form of prototype specifies fixed argument types:

rettype function (argtypes. . .);

This form says the function takes no arguments:

rettype function (void);

This form declares types for some arguments, and allows additional argu-
ments whose types are not specified:

rettype function (argtypes. . ., ...);

For a parameter that’s an array of variable length, you can write its
declaration with ‘*’ where the “length” of the array would normally go; for
example, these are all equivalent.

double maximum (int n, int m, double a[n][m]);
double maximum (int n, int m, double a[*][*]);
double maximum (int n, int m, double a[][*]);
double maximum (int n, int m, double a[][m]);

The old-fashioned form of declaration, which is not a prototype, says nothing
about the types of arguments or how many they should be:

rettype function ();

Warning: Arguments passed to a function declared without a prototype
are converted with the default argument promotions (see Section 24.3 [Argu-
ment Promotions], page 166. Likewise for additional arguments whose types
are unspecified.

Function declarations are usually written at the top level in a source file,
but you can also put them inside code blocks. Then the function name is
visible for the rest of the containing scope. For example:

Chapter 22: Functions 148

void
foo (char *file_name)
{

void save_file (char *);
save_file (file_name);

}

If another part of the code tries to call the function save_file, this
declaration won’t be in effect there. So the function will get an implicit
declaration of the form extern int save_file ();. That conflicts with the
explicit declaration here, and the discrepancy generates a warning.

The syntax of C traditionally allows omitting the data type in a function
declaration if it specifies a storage class or a qualifier. Then the type defaults
to int. For example:

static foo (double x);

defaults the return type to int. This is bad practice; if you see it, fix it.

Calling a function that is undeclared has the effect of an creating implicit
declaration in the innermost containing scope, equivalent to this:

extern int function ();

This declaration says that the function returns int but leaves its argument
types unspecified. If that does not accurately fit the function, then the
program needs an explicit declaration of the function with argument types
in order to call it correctly.

Implicit declarations are deprecated, and a function call that creates one
causes a warning.

22.3 Function Calls
Starting a program automatically calls the function named main (see
Section 22.6 [The main Function], page 151). Aside from that, a function
does nothing except when it is called. That occurs during the execution of
a function-call expression specifying that function.

A function-call expression looks like this:

function (arguments. . .)

Most of the time, function is a function name. However, it can also
be an expression with a function pointer value; that way, the program can
determine at run time which function to call.

The arguments are a series of expressions separated by commas. Each
expression specifies one argument to pass to the function.

The list of arguments in a function call looks just like use of the comma
operator (see Section 8.5 [Comma Operator], page 42), but the fact that it
fills the parentheses of a function call gives it a different meaning.

Here’s an example of a function call, taken from an example near the
beginning (see Chapter 2 [Complete Program], page 10).

Chapter 22: Functions 149

printf ("Fibonacci series item %d is %d\n",
19, fib (19));

The three arguments given to printf are a constant string, the integer
19, and the integer returned by fib (19).

22.4 Function Call Semantics
The meaning of a function call is to compute the specified argument ex-
pressions, convert their values according to the function’s declaration, then
run the function giving it copies of the converted values. (This method of
argument passing is known as call-by-value.) When the function finishes,
the value it returns becomes the value of the function-call expression.

Call-by-value implies that an assignment to the function argument vari-
able has no direct effect on the caller. For instance,

#include <stdlib.h> /* Defines EXIT_SUCCESS. */
#include <stdio.h> /* Declares printf. */

void
subroutine (int x)
{

x = 5;
}

void
main (void)
{

int y = 20;
subroutine (y);
printf ("y is %d\n", y);
return EXIT_SUCCESS;

}

prints ‘y is 20’. Calling subroutine initializes x from the value of y, but
this does not establish any other relationship between the two variables.
Thus, the assignment to x, inside subroutine, changes only that x.

If an argument’s type is specified by the function’s declaration, the func-
tion call converts the argument expression to that type if possible. If the
conversion is impossible, that is an error.

If the function’s declaration doesn’t specify the type of that argument,
then the default argument promotions apply. See Section 24.3 [Argument
Promotions], page 166.

22.5 Function Pointers
A function name refers to a fixed function. Sometimes it is useful to call a
function to be determined at run time; to do this, you can use a function

Chapter 22: Functions 150

pointer value that points to the chosen function (see Chapter 14 [Pointers],
page 68).

Pointer-to-function types can be used to declare variables and other data,
including array elements, structure fields, and union alternatives. They can
also be used for function arguments and return values. These types have the
peculiarity that they are never converted automatically to void * or vice
versa. However, you can do that conversion with a cast.

22.5.1 Declaring Function Pointers

The declaration of a function pointer variable (or structure field) looks al-
most like a function declaration, except it has an additional ‘*’ just before
the variable name. Proper nesting requires a pair of parentheses around the
two of them. For instance, int (*a) (); says, “Declare a as a pointer such
that *a is an int-returning function.”

Contrast these three declarations:

/* Declare a function returning char *. */
char *a (char *);
/* Declare a pointer to a function returning char. */
char (*a) (char *);
/* Declare a pointer to a function returning char *. */
char *(*a) (char *);

The possible argument types of the function pointed to are the same as
in a function declaration. You can write a prototype that specifies all the
argument types:

rettype (*function) (arguments. . .);

or one that specifies some and leaves the rest unspecified:

rettype (*function) (arguments. . ., ...);

or one that says there are no arguments:

rettype (*function) (void);

You can also write a non-prototype declaration that says nothing about
the argument types:

rettype (*function) ();

For example, here’s a declaration for a variable that should point to some
arithmetic function that operates on two doubles:

double (*binary_op) (double, double);

Structure fields, union alternatives, and array elements can be function
pointers; so can parameter variables. The function pointer declaration con-
struct can also be combined with other operators allowed in declarations.
For instance,

int **(*foo)();

declares foo as a pointer to a function that returns type int **, and

int **(*foo[30])();

Chapter 22: Functions 151

declares foo as an array of 30 pointers to functions that return type int **.

int **(**foo)();

declares foo as a pointer to a pointer to a function that returns type int
**.

22.5.2 Assigning Function Pointers

Assuming we have declared the variable binary_op as in the previous sec-
tion, giving it a value requires a suitable function to use. So let’s define a
function suitable for the variable to point to. Here’s one:

double
double_add (double a, double b)
{

return a+b;
}

Now we can give it a value:

binary_op = double_add;

The target type of the function pointer must be upward compatible with
the type of the function (see Chapter 23 [Compatible Types], page 164).

There is no need for ‘&’ in front of double_add. Using a function name
such as double_add as an expression automatically converts it to the func-
tion’s address, with the appropriate function pointer type. However, it is ok
to use ‘&’ if you feel that is clearer:

binary_op = &double_add;

22.5.3 Calling Function Pointers

To call the function specified by a function pointer, just write the function
pointer value in a function call. For instance, here’s a call to the function
binary_op points to:

binary_op (x, 5)

Since the data type of binary_op explicitly specifies type double for the
arguments, the call converts x and 5 to double.

The call conceptually dereferences the pointer binary_op to “get” the
function it points to, and calls that function. If you wish, you can explicitly
represent the derefence by writing the * operator:

(*binary_op) (x, 5)

The ‘*’ reminds people reading the code that binary_op is a function
pointer rather than the name of a specific function.

22.6 The main Function
Every complete executable program requires at least one function, called
main, which is where execution begins. You do not have to explicitly declare

Chapter 22: Functions 152

main, though GNU C permits you to do so. Conventionally, main should be
defined to follow one of these calling conventions:

int main (void) {. . .}
int main (int argc, char *argv[]) {. . .}
int main (int argc, char *argv[], char *envp[]) {. . .}

Using void as the parameter list means that main does not use the argu-
ments. You can write char **argv instead of char *argv[], and likewise
for envp, as the two constructs are equivalent.

You can call main from C code, as you can call any other function, though
that is an unusual thing to do. When you do that, you must write the call
to pass arguments that match the parameters in the definition of main.

The main function is not actually the first code that runs when a program
starts. In fact, the first code that runs is system code from the file crt0.o.
In Unix, this was hand-written assembler code, but in GNU we replaced it
with C code. Its job is to find the arguments for main and call that.

22.6.1 Returning Values from main

When main returns, the process terminates. Whatever value main returns
becomes the exit status which is reported to the parent process. While nom-
inally the return value is of type int, in fact the exit status gets truncated
to eight bits; if main returns the value 256, the exit status is 0.

Normally, programs return only one of two values: 0 for success, and 1
for failure. For maximum portability, use the macro values EXIT_SUCCESS
and EXIT_FAILURE defined in stdlib.h. Here’s an example:

#include <stdlib.h> /* Defines EXIT_SUCCESS */
/* and EXIT_FAILURE. */

int
main (void)
{

. . .
if (foo)
return EXIT_SUCCESS;

else
return EXIT_FAILURE;

}

Some types of programs maintain special conventions for various return
values; for example, comparison programs including cmp and diff return 1
to indicate a mismatch, and 2 to indicate that the comparison couldn’t be
performed.

Chapter 22: Functions 153

22.6.2 Accessing Command-line Parameters

If the program was invoked with any command-line arguments, it can access
them through the arguments of main, argc and argv. (You can give these
arguments any names, but the names argc and argv are customary.)

The value of argv is an array containing all of the command-line argu-
ments as strings, with the name of the command invoked as the first string.
argc is an integer that says how many strings argv contains. Here is an ex-
ample of accessing the command-line parameters, retrieving the program’s
name and checking for the standard --version and --help options:

#include <string.h> /* Declare strcmp. */

int
main (int argc, char *argv[])
{

char *program_name = argv[0];

for (int i = 1; i < argc; i++)
{
if (!strcmp (argv[i], "--version"))

{
/* Print version information and exit. */
. . .

}
else if (!strcmp (argv[i], "--help"))

{
/* Print help information and exit. */
. . .

}
}

. . .
}

22.6.3 Accessing Environment Variables

You can optionally include a third parameter to main, another array of
strings, to capture the environment variables available to the program. Un-
like what happens with argv, there is no additional parameter for the count
of environment variables; rather, the array of environment variables con-
cludes with a null pointer.

#include <stdio.h> /* Declares printf. */

int
main (int argc, char *argv[], char *envp[])
{

/* Print out all environment variables. */
int i = 0;

Chapter 22: Functions 154

while (envp[i])
{
printf ("%s\n", envp[i]);
i++;

}
}

Another method of retrieving environment variables is to use the library
function getenv, which is defined in stdlib.h. Using getenv does not
require defining main to accept the envp pointer. For example, here is a
program that fetches and prints the user’s home directory (if defined):

#include <stdlib.h> /* Declares getenv. */
#include <stdio.h> /* Declares printf. */

int
main (void)
{

char *home_directory = getenv ("HOME");
if (home_directory)
printf ("My home directory is: %s\n", home_directory);

else
printf ("My home directory is not defined!\n");

}

22.7 Advanced Function Features
This section describes some advanced or obscure features for GNU C function
definitions. If you are just learning C, you can skip the rest of this chapter.

22.7.1 Variable-Length Array Parameters

An array parameter can have variable length: simply declare the array type
with a size that isn’t constant. In a nested function, the length can refer to
a variable defined in a containing scope. In any function, it can refer to a
previous parameter, like this:

struct entry
tester (int len, char data[len][len])
{

. . .
}

Alternatively, in function declarations (but not in function definitions),
you can use [*] to denote that the array parameter is of a variable length,
such that these two declarations mean the same thing:

struct entry
tester (int len, char data[len][len]);

struct entry
tester (int len, char data[*][*]);

Chapter 22: Functions 155

The two forms of input are equivalent in GNU C, but emphasizing that the
array parameter is variable-length may be helpful to those studying the code.

You can also omit the length parameter, and instead use some other
in-scope variable for the length in the function definition:

struct entry
tester (char data[*][*]);
. . .
int dataLength = 20;
. . .
struct entry
tester (char data[dataLength][dataLength])
{

. . .
}

In GNU C, to pass the array first and the length afterward, you can use
a parameter forward declaration, like this:

struct entry
tester (int len; char data[len][len], int len)
{

. . .
}

The ‘int len’ before the semicolon is the parameter forward declaration;
it serves the purpose of making the name len known when the declaration
of data is parsed.

You can write any number of such parameter forward declarations in
the parameter list. They can be separated by commas or semicolons, but
the last one must end with a semicolon, which is followed by the “real”
parameter declarations. Each forward declaration must match a subsequent
“real” declaration in parameter name and data type.

Standard C does not support parameter forward declarations.

22.7.2 Variable-Length Parameter Lists

A function that takes a variable number of arguments is called a variadic
function. In C, a variadic function must specify at least one fixed argument
with an explicitly declared data type. Additional arguments can follow, and
can vary in both quantity and data type.

In the function header, declare the fixed parameters in the normal way,
then write a comma and an ellipsis: ‘, ...’. Here is an example of a variadic
function header:

int add_multiple_values (int number, ...)

The function body can refer to fixed arguments by their parameter names,
but the additional arguments have no names. Accessing them in the function
body uses certain standard macros. They are defined in the library header
file stdarg.h, so the code must #include that file.

Chapter 22: Functions 156

In the body, write

va_list ap;
va_start (ap, last_fixed_parameter);

This declares the variable ap (you can use any name for it) and then sets it
up to point before the first additional argument.

Then, to fetch the next consecutive additional argument, write this:

va_arg (ap, type)

After fetching all the additional arguments (or as many as need to be
used), write this:

va_end (ap);

Here’s an example of a variadic function definition that adds any number
of int arguments. The first (fixed) argument says how many more arguments
follow.

#include <stdarg.h> /* Defines va. . . macros. */
. . .

int
add_multiple_values (int argcount, ...)
{

int counter, total = 0;

/* Declare a variable of type va_list. */
va_list argptr;

/* Initialize that variable.. */
va_start (argptr, argcount);

for (counter = 0; counter < argcount; counter++)
{
/* Get the next additional argument. */
total += va_arg (argptr, int);

}

/* End use of the argptr variable. */
va_end (argptr);

return total;
}

With GNU C, va_end is superfluous, but some other compilers might
make va_start allocate memory so that calling va_end is necessary to avoid
a memory leak. Before doing va_start again with the same variable, do va_
end first.

Because of this possible memory allocation, it is risky (in principle) to
copy one va_list variable to another with assignment. Instead, use va_

Chapter 22: Functions 157

copy, which copies the substance but allocates separate memory in the vari-
able you copy to. The call looks like va_copy (to, from), where both to
and from should be variables of type va_list. In principle, do va_end on
each of these variables before its scope ends.

Since the additional arguments’ types are not specified in the function’s
definition, the default argument promotions (see Section 24.3 [Argument
Promotions], page 166) apply to them in function calls. The function defi-
nition must take account of this; thus, if an argument was passed as short,
the function should get it as int. If an argument was passed as float, the
function should get it as double.

C has no mechanism to tell the variadic function how many arguments
were passed to it, so its calling convention must give it a way to determine
this. That’s why add_multiple_values takes a fixed argument that says
how many more arguments follow. Thus, you can call the function like this:

sum = add_multiple_values (3, 12, 34, 190);
/* Value is 12+34+190. */

In GNU C, there is no actual need to use the va_end function. In fact,
it does nothing. It’s used for compatibility with other compilers, when that
matters.

It is a mistake to access variables declared as va_list except in the
specific ways described here. Just what that type consists of is an imple-
mentation detail, which could vary from one platform to another.

22.7.3 Nested Functions

A nested function is a function defined inside another function. The nested
function’s name is local to the block where it is defined. For example, here
we define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing function
that are visible at the point of its definition. This is called lexical scoping.
For example, here we show a nested function that uses an inherited variable
named offset:

Chapter 22: Functions 158

bar (int *array, int offset, int size)
{

int access (int *array, int index)
{ return array[index + offset]; }

int i;
. . .
for (i = 0; i < size; i++)

. . . access (array, i) . . .
}

Nested function definitions can appear wherever automatic variable dec-
larations are allowed; that is, in any block, interspersed with the other dec-
larations and statements in the block.

The nested function’s name is visible only within the parent block; the
name’s scope starts from its definition and continues to the end of the con-
taining block. If the nested function’s name is the same as the parent func-
tion’s name, there wil be no way to refer to the parent function inside the
scope of the name of the nested function.

Using extern or static on a nested function definition is an error.

It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function. You
can do this safely, but you must be careful:

hack (int *array, int size, int addition)
{

void store (int index, int value)
{ array[index] = value + addition; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an
argument. If intermediate calls store, the arguments given to store are
used to store into array. store also accesses hack’s local variable addition.

It is safe for intermediate to call store because hack’s stack frame,
with its arguments and local variables, continues to exist during the call to
intermediate.

Calling the nested function through its address after the containing func-
tion has exited is asking for trouble. If it is called after a containing scope
level has exited, and if it refers to some of the variables that are no longer
in scope, it will refer to memory containing junk or other data. It’s not wise
to take the risk.

The GNU C Compiler implements taking the address of a nested func-
tion using a technique called trampolines. This technique was described
in Lexical Closures for C++ (Thomas M. Breuel, USENIX C++ Conference
Proceedings, October 17–21, 1988).

Chapter 22: Functions 159

A nested function can jump to a label inherited from a containing func-
tion, provided the label was explicitly declared in the containing function
(see Section 19.13 [Local Labels], page 123). Such a jump returns instantly
to the containing function, exiting the nested function that did the goto and
any intermediate function invocations as well. Here is an example:

bar (int *array, int offset, int size)
{

/* Explicitly declare the label failure. */
__label__ failure;
int access (int *array, int index)
{
if (index > size)

/* Exit this function,
and return to bar. */

goto failure;
return array[index + offset];

}

int i;
. . .
for (i = 0; i < size; i++)

. . . access (array, i) . . .
. . .
return 0;

/* Control comes here from access
if it does the goto. */

failure:
return -1;

}

To declare the nested function before its definition, use auto (which is
otherwise meaningless for function declarations; see Section 20.10 [auto and
register], page 135). For example,

bar (int *array, int offset, int size)
{

auto int access (int *, int);
. . .
. . . access (array, i) . . .
. . .
int access (int *array, int index)
{

. . .
}

. . .
}

Chapter 22: Functions 160

22.7.4 Inline Function Definitions

To declare a function inline, use the inline keyword in its definition. Here’s
a simple function that takes a pointer-to-int and increments the integer
stored there—declared inline.

struct list
{

struct list *first, *second;
};

inline struct list *
list_first (struct list *p)
{

return p->first;
}

inline struct list *
list_second (struct list *p)
{

return p->second;
}

optimized compilation can substitute the inline function’s body for any
call to it. This is called inlining the function. It makes the code that contains
the call run faster, significantly so if the inline function is small.

Here’s a function that uses pair_second:

int
pairlist_length (struct list *l)
{

int length = 0;
while (l)
{
length++;
l = pair_second (l);

}
return length;

}

Substituting the code of pair_second into the definition of pairlist_
length results in this code, in effect:

int
pairlist_length (struct list *l)
{

int length = 0;
while (l)
{
length++;

Chapter 22: Functions 161

l = l->second;
}

return length;
}

Since the definition of pair_second does not say extern or static, that
definition is used only for inlining. It doesn’t generate code that can be
called at run time. If not all the calls to the function are inlined, there must
be a definition of the same function name in another module for them to
call.

Adding static to an inline function definition means the function def-
inition is limited to this compilation module. Also, it generates run-time
code if necessary for the sake of any calls that were not inlined. If all calls
are inlined then the function definition does not generate run-time code, but
you can force generation of run-time code with the option -fkeep-inline-
functions.

Specifying extern along with inline means the function is external and
generates run-time code to be called from other separately compiled modules,
as well as inlined. You can define the function as inline without extern in
other modules so as to inline calls to the same function in those modules.

Why are some calls not inlined? First of all, inlining is an optimization,
so non-optimized compilation does not inline.

Some calls cannot be inlined for technical reasons. Also, certain usages in
a function definition can make it unsuitable for inline substitution. Among
these usages are: variadic functions, use of alloca, use of computed goto
(see Section 19.14 [Labels as Values], page 124), and use of nonlocal goto.
The option -Winline requests a warning when a function marked inline
is unsuitable to be inlined. The warning explains what obstacle makes it
unsuitable.

Just because a call can be inlined does not mean it should be inlined.
The GNU C compiler weighs costs and benefits to decide whether inlining a
particular call is advantageous.

You can force inlining of all calls to a given function that can be inlined,
even in a non-optimized compilation. by specifying the ‘always_inline’
attribute for the function, like this:

/* Prototype. */
inline void foo (const char) __attribute__((always_inline));

This is a GNU C extension. See Appendix D [Attributes], page 243.

A function call may be inlined even if not declared inline in special
cases where the compiler can determine this is correct and desirable. For
instance, when a static function is called only once, it will very likely be
inlined. With -flto, link-time optimization, any function might be inlined.
To absolutely prevent inlining of a specific function, specify __attribute__
((__noinline__)) in the function’s definition.

Chapter 22: Functions 162

22.8 Obsolete Function Features
These features of function definitions are still used in old programs, but you
shouldn’t write code this way today. If you are just learning C, you can skip
this section.

22.8.1 Older GNU C Inlining

The GNU C spec for inline functions, before GCC version 5, defined extern
inline on a function definition to mean to inline calls to it but not generate
code for the function that could be called at run time. By contrast, inline
without extern specified to generate run-time code for the function. In ef-
fect, ISO incompatibly flipped the meanings of these two cases. We changed
GCC in version 5 to adopt the ISO specification.

Many programs still use these cases with the previous GNU C meanings.
You can specify use of those meanings with the option -fgnu89-inline.
You can also specify this for a single function with __attribute__ ((gnu_
inline)). Here’s an example:

inline __attribute__ ((gnu_inline))
int
inc (int *a)
{

(*a)++;
}

22.8.2 Old-Style Function Definitions

The syntax of C traditionally allows omitting the data type in a function
declaration if it specifies a storage class or a qualifier. Then the type defaults
to int. For example:

static foo (double x);

defaults the return type to int. This is bad practice; if you see it, fix it.

An old-style (or “K&R”) function definition is the way function defini-
tions were written in the 1980s. It looks like this:

rettype
function (parmnames)
parm_declarations

{
body

}

In parmnames, only the parameter names are listed, separated by com-
mas. Then parm declarations declares their data types; these declarations
look just like variable declarations. If a parameter is listed in parmnames
but has no declaration, it is implicitly declared int.

There is no reason to write a definition this way nowadays, but they can
still be seen in older GNU programs.

163

An old-style variadic function definition looks like this:

#include <varargs.h>

int
add_multiple_values (va_alist)

va_dcl
{

int argcount;
int counter, total = 0;

/* Declare a variable of type va_list. */
va_list argptr;

/* Initialize that variable. */
va_start (argptr);

/* Get the first argument (fixed). */
argcount = va_arg (int);

for (counter = 0; counter < argcount; counter++)
{
/* Get the next additional argument. */
total += va_arg (argptr, int);

}

/* End use of the argptr variable. */
va_end (argptr);

return total;
}

Note that the old-style variadic function definition has no fixed parameter
variables; all arguments must be obtained with va_arg.

164

23 Compatible Types

Declaring a function or variable twice is valid in C only if the two declarations
specify compatible types. In addition, some operations on pointers require
operands to have compatible target types.

In C, two different primitive types are never compatible. Likewise for
the defined types struct, union and enum: two separately defined types are
incompatible unless they are defined exactly the same way.

However, there are a few cases where different types can be compatible:

• Every enumeration type is compatible with some integer type. In GNU
C, the choice of integer type depends on the largest enumeration value.

• Array types are compatible if the element types are compatible and the
sizes (when specified) match.

• Pointer types are compatible if the pointer target types are compatible.

• Function types that specify argument types are compatible if the return
types are compatible and the argument types are compatible, argument
by argument. In addition, they must all agree in whether they use ...
to allow additional arguments.

• Function types that don’t specify argument types are compatible if the
return types are.

• Function types that specify the argument types are compatible with
function types that omit them, if the return types are compatible and
the specified argument types are unaltered by the argument promotions
(see Section 24.3 [Argument Promotions], page 166).

In order for types to be compatible, they must agree in their type quali-
fiers. Thus, const int and int are incompatible. It follows that const int
* and int * are incompatible too (they are pointers to types that are not
compatible).

If two types are compatible ignoring the qualifiers, we call them nearly
compatible. (If they are array types, we ignore qualifiers on the element
types.1) Comparison of pointers is valid if the pointers’ target types are
nearly compatible. Likewise, the two branches of a conditional expression
may be pointers to nearly compatible target types.

If two types are compatible ignoring the qualifiers, and the first type has
all the qualifiers of the second type, we say the first is upward compatible
with the second. Assignment of pointers requires the assigned pointer’s
target type to be upward compatible with the right operand (the new value)’s
target type.

1 This is a GNU C extension.

165

24 Type Conversions

C converts between data types automatically when that seems clearly nec-
essary. In addition, you can convert explicitly with a cast.

24.1 Explicit Type Conversion
You can do explicit conversions using the unary cast operator, which is
written as a type designator (see Section 11.6 [Type Designators], page 55)
in parentheses. For example, (int) is the operator to cast to type int.
Here’s an example of using it:

{
double d = 5.5;

printf ("Floating point value: %f\n", d);
printf ("Rounded to integer: %d\n", (int) d);

}

Using (int) d passes an int value as argument to printf, so you can
print it with ‘%d’. Using just d without the cast would pass the value as
double. That won’t work at all with ‘%d’; the results would be gibberish.

To divide one integer by another without rounding, cast either of the
integers to double first:

(double) dividend / divisor
dividend / (double) divisor

It is enough to cast one of them, because that forces the common type
to double so the other will be converted automatically.

The valid cast conversions are:

• One numerical type to another.

• One pointer type to another. (Converting between pointers that point
to functions and pointers that point to data is not standard C.)

• A pointer type to an integer type.

• An integer type to a pointer type.

• To a union type, from the type of any alternative in the union (see
Section 15.13 [Unions], page 89). (This is a GNU extension.)

• Anything, to void.

24.2 Assignment Type Conversions
Certain type conversions occur automatically in assignments and certain
other contexts. These are the conversions assignments can do:

• Converting any numeric type to any other numeric type.

• Converting void * to any other pointer type (except pointer-to-function
types).

Chapter 24: Type Conversions 166

• Converting any other pointer type to void *. (except pointer-to-
function types).

• Converting 0 (a null pointer constant) to any pointer type.

• Converting any pointer type to bool. (The result is 1 if the pointer is
not null.)

• Converting between pointer types when the left-hand target type is
upward compatible with the right-hand target type. See Chapter 23
[Compatible Types], page 164.

These type conversions occur automatically in certain contexts, which
are:

• An assignment converts the type of the right-hand expression to the
type wanted by the left-hand expression. For example,

double i;
i = 5;

converts 5 to double.

• A function call, when the function specifies the type for that argument,
converts the argument value to that type. For example,

void foo (double);
foo (5);

converts 5 to double.

• A return statement converts the specified value to the type that the
function is declared to return. For example,

double
foo ()
{

return 5;
}

also converts 5 to double.

In all three contexts, if the conversion is impossible, that constitutes an
error.

24.3 Argument Promotions
When a function’s definition or declaration does not specify the type of an
argument, that argument is passed without conversion in whatever type it
has, with these exceptions:

• Some narrow numeric values are promoted to a wider type. If the ex-
pression is a narrow integer, such as char or short, the call converts it
automatically to int (see Section 11.1 [Integer Types], page 50).1

1 On an embedded controller where char or short is the same width as int, unsigned
char or unsigned short promotes to unsigned int, but that never occurs in GNU C
on real computers.

Chapter 24: Type Conversions 167

In this example, the expression c is passed as an int:

char c = ’$’;

printf ("Character c is ’%c’\n", c);

• If the expression has type float, the call converts it automatically to
double.

• An array as argument is converted to a pointer to its zeroth element.

• A function name as argument is converted to a pointer to that function.

24.4 Operand Promotions
The operands in arithmetic operations undergo type conversion automati-
cally. These operand promotions are the same as the argument promotions
except without converting float to double. In other words, the operand
promotions convert

• char or short (whether signed or not) to int.

• an array to a pointer to its zeroth element, and

• a function name to a pointer to that function.

24.5 Common Type
Arithmetic binary operators (except the shift operators) convert their
operands to the common type before operating on them. Conditional ex-
pressions also convert the two possible results to their common type. Here
are the rules for determining the common type.

If one of the numbers has a floating-point type and the other is an integer,
the common type is that floating-point type. For instance,

5.6 * 2 ⇒ 11.2 /* a double value */

If both are floating point, the type with the larger range is the common
type.

If both are integers but of different widths, the common type is the wider
of the two.

If they are integer types of the same width, the common type is unsigned
if either operand is unsigned, and it’s long if either operand is long. It’s
long long if either operand is long long.

These rules apply to addition, subtraction, multiplication, division, re-
mainder, comparisons, and bitwise operations. They also apply to the two
branches of a conditional expression, and to the arithmetic done in a modi-
fying assignment operation.

168

25 Scope

Each definition or declaration of an identifier is visible in certain parts of the
program, which is typically less than the whole of the program. The parts
where it is visible are called its scope.

Normally, declarations made at the top-level in the source – that is, not
within any blocks and function definitions – are visible for the entire contents
of the source file after that point. This is called file scope (see Section 20.6
[File-Scope Variables], page 132).

Declarations made within blocks of code, including within function defi-
nitions, are visible only within those blocks. This is called block scope. Here
is an example:

void
foo (void)
{

int x = 42;
}

In this example, the variable x has block scope; it is visible only within
the foo function definition block. Thus, other blocks could have their own
variables, also named x, without any conflict between those variables.

A variable declared inside a subblock has a scope limited to that subblock,

void
foo (void)
{

{
int x = 42;

}
// x is out of scope here.

}

If a variable declared within a block has the same name as a variable de-
clared outside of that block, the definition within the block takes precedence
during its scope:

int x = 42;

void
foo (void)
{

int x = 17;
printf ("%d\n", x);

}

This prints 17, the value of the variable x declared in the function body
block, rather than the value of the variable x at file scope. We say that the
inner declaration of x shadows the outer declaration, for the extent of the
inner declaration’s scope.

Chapter 25: Scope 169

A declaration with block scope can be shadowed by another declaration
with the same name in a subblock.

void
foo (void)
{

char *x = "foo";
{
int x = 42;
. . .
exit (x / 6);

}
}

A function parameter’s scope is the entire function body, but it can be
shadowed. For example:

int x = 42;

void
foo (int x)
{

printf ("%d\n", x);
}

This prints the value of x the function parameter, rather than the value of
the file-scope variable x. However,

Labels (see Section 19.12 [goto Statement], page 120) have function scope:
each label is visible for the whole of the containing function body, both before
and after the label declaration:

void
foo (void)
{

. . .
goto bar;
. . .
{ // Subblock does not affect labels.
bar:
. . .

}
goto bar;

}

Except for labels, a declared identifier is not visible to code before its
declaration. For example:

int x = 5;
int y = x + 10;

will work, but:

170

int x = y + 10;
int y = 5;

cannot refer to the variable y before its declaration.

171

26 Preprocessing

As the first stage of compiling a C source module, GCC transforms the text
with text substitutions and file inclusions. This is called preprocessing.

26.1 Preprocessing Overview
GNU C performs preprocessing on each line of a C program as the first
stage of compilation. Preprocessing operates on a line only when it con-
tains a preprocessing directive or uses a macro—all other lines pass through
preprocessing unchanged.

Here are some jobs that preprocessing does. The rest of this chapter gives
the details.

• Inclusion of header files. These are files (usually containing declarations
and macro definitions) that can be substituted into your program.

• Macro expansion. You can define macros, which are abbreviations for
arbitrary fragments of C code. Preprocessing replaces the macros with
their definitions. Some macros are automatically predefined.

• Conditional compilation. You can include or exclude parts of the pro-
gram according to various conditions.

• Line control. If you use a program to combine or rearrange source files
into an intermediate file that is then compiled, you can use line control
to inform the compiler where each source line originally came from.

• Compilation control. #pragma and _Pragma invoke some special com-
piler features in how to handle certain constructs.

• Diagnostics. You can detect problems at compile time and issue errors
or warnings.

Except for expansion of predefined macros, all these operations happen
only if you use preprocessing directives to request them.

26.2 Directives
Preprocessing directives are lines in the program that start with ‘#’. White-
space is allowed before and after the ‘#’. The ‘#’ is followed by an identifier,
the directive name. It specifies the operation to perform. Here are a couple
of examples:

#define LIMIT 51
undef LIMIT

error You screwed up!

We usually refer to a directive as #name where name is the directive name.
For example, #define means the directive that defines a macro.

The ‘#’ that begins a directive cannot come from a macro expansion.
Also, the directive name is not macro expanded. Thus, if foo is defined as a

Chapter 26: Preprocessing 172

macro expanding to define, that does not make #foo a valid preprocessing
directive.

The set of valid directive names is fixed. Programs cannot define new
preprocessing directives.

Some directives require arguments; these make up the rest of the directive
line and must be separated from the directive name by whitespace. For
example, #define must be followed by a macro name and the intended
expansion of the macro.

A preprocessing directive cannot cover more than one line. The line
can, however, be continued with backslash-newline, or by a ‘/*. . .*/’-style
comment that extends past the end of the line. These will be replaced (by
nothing, or by whitespace) before the directive is processed.

26.3 Preprocessing Tokens
Preprocessing divides C code (minus its comments) into tokens that are
similar to C tokens, but not exactly the same. Here are the quirks of pre-
processing tokens.

The main classes of preprocessing tokens are identifiers, preprocessing
numbers, string constants, character constants, and punctuators; there are
a few others too.

identifier An identifier preprocessing token is syntactically like an identi-
fier in C: any sequence of letters, digits, or underscores, as well as
non-ASCII characters represented using ‘\U’ or ‘\u’, that doesn’t
begin with a digit.

During preprocessing, the keywords of C have no special signif-
icance; at that stage, they are simply identifiers. Thus, you can
define a macro whose name is a keyword. The only identifier that
is special during preprocessing is defined (see Section 26.6.2.3
[defined], page 201).

preprocessing number
A preprocessing number is something that preprocessing treats
textually as a number, including C numeric constants, and other
sequences of characters which resemble numeric constants. Pre-
processing does not try to verify that a preprocessing number is
a valid number in C, and indeed it need not be one.

More precisely, preprocessing numbers begin with an optional
period, a required decimal digit, and then continue with any
sequence of letters, digits, underscores, periods, and exponents.
Exponents are the two-character sequences ‘e+’, ‘e-’, ‘E+’, ‘E-’,
‘p+’, ‘p-’, ‘P+’, and ‘P-’. (The exponents that begin with ‘p’ or
‘P’ are new to C99. They are used for hexadecimal floating-point
constants.)

Chapter 26: Preprocessing 173

The reason behind this unusual syntactic class is that the full
complexity of numeric constants is irrelevant during preprocess-
ing. The distinction between lexically valid and invalid floating-
point numbers, for example, doesn’t matter at this stage. The
use of preprocessing numbers makes it possible to split an iden-
tifier at any position and get exactly two tokens, and reliably
paste them together using the ## operator (see Section 26.5.5
[Concatenation], page 185).

punctuator
A punctuator is syntactically like an operator. These are the
valid punctuators:

[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

string constant
A string constant in the source code is recognized by preprocess-
ing as a single preprocessing token.

character constant
A character constant in the source code is recognized by prepro-
cessing as a single preprocessing token.

header name
Within the #include directive, preprocessing recognizes a
header name token. It consists of ‘"name"’, where name is a
sequence of source characters other than newline and ‘"’, or
‘<name>’, where name is a sequence of source characters other
than newline and ‘>’.

In practice, it is more convenient to think that the #include
line is exempt from tokenization.

other Any other character that’s valid in a C source program is treated
as a separate preprocessing token.

Once the program is broken into preprocessing tokens, they remain sep-
arate until the end of preprocessing. Macros that generate two consecutive
tokens insert whitespace to keep them separate, if necessary. For example,

#define foo() bar
foo()baz

7→ bar baz
not

7→ barbaz

Chapter 26: Preprocessing 174

The only exception is with the ## preprocessing operator, which pastes
tokens together (see Section 26.5.5 [Concatenation], page 185).

Preprocessing treats the null character (code 0) as whitespace, but gener-
ates a warning for it because it may be invisible to the user (many terminals
do not display it at all) and its presence in the file is probably a mistake.

26.4 Header Files
A header file is a file of C code, typically containing C declarations and
macro definitions (see Section 26.5 [Macros], page 179), to be shared between
several source files. You request the use of a header file in your program by
including it, with the C preprocessing directive #include.

Header files serve two purposes.

• System header files declare the interfaces to parts of the operating sys-
tem. You include them in your program to supply the definitions and
declarations that you need to invoke system calls and libraries.

• Program-specific header files contain declarations for interfaces between
the source files of a particular program. It is a good idea to create a
header file for related declarations and macro definitions if all or most
of them are needed in several different source files.

Including a header file produces the same results as copying the header
file into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear in only
one place. If they need to be changed, you can change them in one place,
and programs that include the header file will then automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to change
one copy will result in inconsistencies within a program.

In C, the usual convention is to give header files names that end with
.h. It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.

26.4.1 #include Syntax

You can specify inclusion of user and system header files with the prepro-
cessing directive #include. It has two variants:

#include <file>
This variant is used for system header files. It searches for a
file named file in a standard list of system directories. You can
prepend directories to this list with the -I option (see Section
“Invoking GCC” in Using the GNU Compiler Collection).

#include "file"
This variant is used for header files of your own program. It
searches for a file named file first in the directory containing

Chapter 26: Preprocessing 175

the current file, then in the quote directories, then the same
directories used for <file>. You can prepend directories to the
list of quote directories with the -iquote option.

The argument of #include, whether delimited with quote marks or angle
brackets, behaves like a string constant in that comments are not recognized,
and macro names are not expanded. Thus, #include <x/*y> specifies in-
clusion of a system header file named x/*y.

However, if backslashes occur within file, they are considered ordi-
nary text characters, not escape characters: character escape sequences
such as used in string constants in C are not meaningful here. Thus,
#include "x\n\\y" specifies a filename containing three backslashes. By
the same token, there is no way to escape ‘"’ or ‘>’ to include it in the
header file name if it would instead end the file name.

Some systems interpret ‘\’ as a file name component separator. All these
systems also interpret ‘/’ the same way. It is most portable to use only ‘/’.

It is an error to put anything other than comments on the #include line
after the file name.

26.4.2 #include Operation

The #include directive works by scanning the specified header file as input
before continuing with the rest of the current file. The result of preprocessing
consists of the text already generated, followed by the result of preprocess-
ing the included file, followed by whatever results from the text after the
#include directive. For example, if you have a header file header.h as
follows,

char *test (void);

and a main program called program.c that uses the header file, like this,

int x;
#include "header.h"

int
main (void)
{

puts (test ());
}

the result is equivalent to putting this text in program.c:

int x;
char *test (void);

int
main (void)
{

puts (test ());
}

Chapter 26: Preprocessing 176

Included files are not limited to declarations and macro definitions; those
are merely the typical uses. Any fragment of a C program can be included
from another file. The include file could even contain the beginning of a
statement that is concluded in the containing file, or the end of a statement
that was started in the including file. However, an included file must consist
of complete tokens. Comments and string literals that have not been closed
by the end of an included file are invalid. For error recovery, the compiler
terminates them at the end of the file.

To avoid confusion, it is best if header files contain only complete syn-
tactic units—function declarations or definitions, type declarations, etc.

The line following the #include directive is always treated as a separate
line, even if the included file lacks a final newline. There is no problem
putting a preprocessing directive there.

26.4.3 Search Path

GCC looks in several different places for header files to be included. On the
GNU system, and Unix systems, the default directories for system header
files are:

libdir/gcc/target/version/include
/usr/local/include
libdir/gcc/target/version/include-fixed
libdir/target/include
/usr/include/target
/usr/include

The list may be different in some operating systems. Other directories are
added for C++.

In the above, target is the canonical name of the system GCC was con-
figured to compile code for; often but not always the same as the canonical
name of the system it runs on. version is the version of GCC in use.

You can add to this list with the -Idir command-line option. All the
directories named by -I are searched, in left-to-right order, before the default
directories. The only exception is when dir is already searched by default.
In this case, the option is ignored and the search order for system directories
remains unchanged.

Duplicate directories are removed from the quote and bracket search
chains before the two chains are merged to make the final search chain.
Thus, it is possible for a directory to occur twice in the final search chain if
it was specified in both the quote and bracket chains.

You can prevent GCC from searching any of the default directories with
the -nostdinc option. This is useful when you are compiling an operating
system kernel or some other program that does not use the standard C
library facilities, or the standard C library itself. -I options are not ignored
as described above when -nostdinc is in effect.

Chapter 26: Preprocessing 177

GCC looks for headers requested with #include "file" first in the di-
rectory containing the current file, then in the quote directories specified
by -iquote options, then in the same places it looks for a system header.
For example, if /usr/include/sys/stat.h contains #include "types.h",
GCC looks for types.h first in /usr/include/sys, then in the quote direc-
tories and then in its usual search path.

#line (see Section 26.8 [Line Control], page 204) does not change GCC’s
idea of the directory containing the current file.

The -I- is an old-fashioned, deprecated way to specify the quote direc-
tories. To look for headers in a directory named -, specify -I./-. There are
several more ways to adjust the header search path. See Section “Invoking
GCC” in Using the GNU Compiler Collection.

26.4.4 Once-Only Headers

If a header file happens to be included twice, the compiler will process its
contents twice. This is very likely to cause an error, e.g. when the compiler
sees the same structure definition twice.

The standard way to prevent this is to enclose the entire real contents of
the file in a conditional, like this:

/* File foo. */
#ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN

the entire file

#endif /* !FILE_FOO_SEEN */

This construct is commonly known as a wrapper #ifndef. When the
header is included again, the conditional will be false, because FILE_FOO_
SEEN is defined. Preprocessing skips over the entire contents of the file, so
that compilation will never “see” the file contents twice in one module.

GCC optimizes this case even further. It remembers when a header file
has a wrapper #ifndef. If a subsequent #include specifies that header, and
the macro in the #ifndef is still defined, it does not bother to rescan the
file at all.

You can put comments in the header file outside the wrapper. They do
not interfere with this optimization.

The macro FILE_FOO_SEEN is called the controlling macro or guard
macro. In a user header file, the macro name should not begin with ‘_’. In a
system header file, it should begin with ‘__’ (or ‘_’ followed by an upper-case
letter) to avoid conflicts with user programs. In any kind of header file, the
macro name should contain the name of the file and some additional text,
to avoid conflicts with other header files.

Chapter 26: Preprocessing 178

26.4.5 Computed Includes

Sometimes it is necessary to select one of several different header files to be
included into your program. They might specify configuration parameters
to be used on different sorts of operating systems, for instance. You could
do this with a series of conditionals,

#if SYSTEM_1
include "system_1.h"
#elif SYSTEM_2
include "system_2.h"
#elif SYSTEM_3
/* . . . */
#endif

That rapidly becomes tedious. Instead, GNU C offers the ability to use
a macro for the header name. This is called a computed include. Instead of
writing a header name as the direct argument of #include, you simply put
a macro name there instead:

#define SYSTEM_H "system_1.h"
/* . . . */
#include SYSTEM_H

SYSTEM_H is expanded, then system_1.h is included as if the #include had
been written with that name. SYSTEM_H could be defined by your Makefile
with a -D option.

You must be careful when you define such a macro. #define saves tokens,
not text. GCC has no way of knowing that the macro will be used as the
argument of #include, so it generates ordinary tokens, not a header name.
This is unlikely to cause problems if you use double-quote includes, which are
syntactically similar to string constants. If you use angle brackets, however,
you may have trouble.

The syntax of a computed include is actually a bit more general than the
above. If the first non-whitespace character after #include is not ‘"’ or ‘<’,
then the entire line is macro-expanded like running text would be.

If the line expands to a single string constant, the contents of that string
constant are the file to be included. Preprocessing does not re-examine the
string for embedded quotes, but neither does it process backslash escapes in
the string. Therefore

#define HEADER "a\"b"
#include HEADER

looks for a file named a\"b. Preprocessing searches for the file according to
the rules for double-quoted includes.

If the line expands to a token stream beginning with a ‘<’ token and
including a ‘>’ token, then the tokens between the ‘<’ and the first ‘>’ are
combined to form the filename to be included. Any whitespace between
tokens is reduced to a single space; then any space after the initial ‘<’ is

Chapter 26: Preprocessing 179

retained, but a trailing space before the closing ‘>’ is ignored. Preprocessing
searches for the file according to the rules for angle-bracket includes.

In either case, if there are any tokens on the line after the file name, an
error occurs and the directive is not processed. It is also an error if the result
of expansion does not match either of the two expected forms.

These rules are implementation-defined behavior according to the C stan-
dard. To minimize the risk of different compilers interpreting your computed
includes differently, we recommend you use only a single object-like macro
that expands to a string constant. That also makes it clear to people reading
your program.

26.5 Macros
A macro is a fragment of code that has been given a name. Whenever the
name is used, it is replaced by the contents of the macro. There are two kinds
of macros. They differ mostly in what they look like when they are used.
Object-like macros resemble data objects when used, function-like macros
resemble function calls.

You may define any valid identifier as a macro, even if it is a C keyword.
In the preprocessing stage, GCC does not know anything about keywords.
This can be useful if you wish to hide a keyword such as const from an older
compiler that does not understand it. However, the preprocessing operator
defined (see Section 26.6.2.3 [defined], page 201) can never be defined as
a macro, and C++’s named operators (see Section “C++ Named Operators”
in Using the GNU Compiler Collection) cannot be macros when compiling
C++ code.

The operator # is used in macros for stringification of an argument (see
Section 26.5.4 [Stringification], page 183), and ## is used for concatenation of
arguments into larger tokens (see Section 26.5.5 [Concatenation], page 185)

26.5.1 Object-like Macros

An object-like macro is a simple identifier that will be replaced by a code
fragment. It is called object-like because in most cases the use of the macro
looks like reference to a data object in code that uses it. These macros are
most commonly used to give symbolic names to numeric constants.

The way to define macros with the #define directive. #define is followed
by the name of the macro and then the token sequence it should be an ab-
breviation for, which is variously referred to as the macro’s body, expansion
or replacement list. For example,

#define BUFFER_SIZE 1024

defines a macro named BUFFER_SIZE as an abbreviation for the token 1024.
If somewhere after this #define directive there comes a C statement of the
form

foo = (char *) malloc (BUFFER_SIZE);

Chapter 26: Preprocessing 180

then preprocessing will recognize and expand the macro BUFFER_SIZE, so
that compilation will see the tokens:

foo = (char *) malloc (1024);

By convention, macro names are written in upper case. Programs are
easier to read when it is possible to tell at a glance which names are macros.
Macro names that start with ‘__’ are reserved for internal uses, and many
of them are defined automatically, so don’t define such macro names unless
you really know what you’re doing. Likewise for macro names that start
with ‘_’ and an upper-case letter.

The macro’s body ends at the end of the #define line. You may con-
tinue the definition onto multiple lines, if necessary, using backslash-newline.
When the macro is expanded, however, it will all come out on one line. For
example,

#define NUMBERS 1, \
2, \
3

int x[] = { NUMBERS };
7→ int x[] = { 1, 2, 3 };

The most common visible consequence of this is surprising line numbers in
error messages.

There is no restriction on what can go in a macro body provided it de-
composes into valid preprocessing tokens. Parentheses need not balance, and
the body need not resemble valid C code. (If it does not, you may get error
messages from the C compiler when you use the macro.)

Preprocessing scans the program sequentially. A macro definition takes
effect right after its appearance. Therefore, the following input

foo = X;
#define X 4
bar = X;

produces

foo = X;
bar = 4;

When preprocessing expands a macro name, the macro’s expansion re-
places the macro invocation, then the expansion is examined for more macros
to expand. For example,

#define TABLESIZE BUFSIZE
#define BUFSIZE 1024
TABLESIZE

7→ BUFSIZE
7→ 1024

TABLESIZE is expanded first to produce BUFSIZE, then that macro is ex-
panded to produce the final result, 1024.

Chapter 26: Preprocessing 181

Notice that BUFSIZE was not defined when TABLESIZE was defined. The
#define for TABLESIZE uses exactly the expansion you specify—in this case,
BUFSIZE—and does not check to see whether it too contains macro names.
Only when you use TABLESIZE is the result of its expansion scanned for more
macro names.

This makes a difference if you change the definition of BUFSIZE at some
point in the source file. TABLESIZE, defined as shown, will always expand
using the definition of BUFSIZE that is currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE
#undef BUFSIZE
#define BUFSIZE 37

Now TABLESIZE expands (in two stages) to 37.

If the expansion of a macro contains its own name, either directly or via
intermediate macros, it is not expanded again when the expansion is exam-
ined for more macros. This prevents infinite recursion. See Section 26.5.10.6
[Self-Referential Macros], page 196, for the precise details.

26.5.2 Function-like Macros

You can also define macros whose use looks like a function call. These are
called function-like macros. To define one, use the #define directive with a
pair of parentheses immediately after the macro name. For example,

#define lang_init() c_init()
lang_init()

7→ c_init()

A function-like macro is expanded only when its name appears with a pair
of parentheses after it. If you write just the name, without parentheses, it is
left alone. This can be useful when you have a function and a macro of the
same name, and you wish to use the function sometimes. Whitespace and
line breaks before or between the parentheses are ignored when the macro
is called.

extern void foo(void);
#define foo() /* optimized inline version */
/* . . . */

foo();
funcptr = foo;

Here the call to foo() expands the macro, but the function pointer
funcptr gets the address of the real function foo. If the macro were to
be expanded there, it would cause a syntax error.

If you put spaces between the macro name and the parentheses in the
macro definition, that does not define a function-like macro, it defines an
object-like macro whose expansion happens to begin with a pair of paren-
theses. Here is an example:

#define lang_init () c_init()

Chapter 26: Preprocessing 182

lang_init()
7→ () c_init()()

The first two pairs of parentheses in this expansion come from the macro.
The third is the pair that was originally after the macro invocation. Since
lang_init is an object-like macro, it does not consume those parentheses.

Any name can have at most one macro definition at a time. Thus, you
can’t define the same name as an object-like macro and a function-like macro
at once.

26.5.3 Macro Arguments

Function-like macros can take arguments, just like true functions. To define
a macro that uses arguments, you insert parameters between the pair of
parentheses in the macro definition that make the macro function-like. The
parameters must be valid C identifiers, separated by commas and optionally
whitespace.

To invoke a macro that takes arguments, you write the name of the macro
followed by a list of actual arguments in parentheses, separated by commas.
The invocation of the macro need not be restricted to a single logical line—
it can cross as many lines in the source file as you wish. The number of
arguments you give must match the number of parameters in the macro
definition. When the macro is expanded, each use of a parameter in its
body is replaced by the tokens of the corresponding argument. (The macro
body is not required to use all of the parameters.)

As an example, here is a macro that computes the minimum of two nu-
meric values, as it is defined in many C programs, and some uses.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
x = min(a, b); 7→ x = ((a) < (b) ? (a) : (b));
y = min(1, 2); 7→ y = ((1) < (2) ? (1) : (2));
z = min(a+28, *p); 7→ z = ((a+28) < (*p) ? (a+28) : (*p));

In this small example you can already see several of the dangers of macro
arguments. See Section 26.5.10 [Macro Pitfalls], page 192, for detailed ex-
planations.

Leading and trailing whitespace in each argument is dropped, and all
whitespace between the tokens of an argument is reduced to a single space.
Parentheses within each argument must balance; a comma within such
parentheses does not end the argument. However, there is no requirement
for square brackets or braces to balance, and they do not prevent a comma
from separating arguments. Thus,

macro (array[x = y, x + 1])

passes two arguments to macro: array[x = y and x + 1]. If you want to
supply array[x = y, x + 1] as an argument, you can write it as array[(x
= y, x + 1)], which is equivalent C code. However, putting an assignment
inside an array subscript is to be avoided anyway.

Chapter 26: Preprocessing 183

All arguments to a macro are completely macro-expanded before they
are substituted into the macro body. After substitution, the complete text
is scanned again for macros to expand, including the arguments. This rule
may seem strange, but it is carefully designed so you need not worry about
whether any function call is actually a macro invocation. You can run into
trouble if you try to be too clever, though. See Section 26.5.10.7 [Argument
Prescan], page 197, for detailed discussion.

For example, min (min (a, b), c) is first expanded to

min (((a) < (b) ? (a) : (b)), (c))

and then to

((((a) < (b) ? (a) : (b))) < (c)
? (((a) < (b) ? (a) : (b)))
: (c))

(The line breaks shown here for clarity are not actually generated.)

You can leave macro arguments empty without error, but many macros
will then expand to invalid code. You cannot leave out arguments entirely;
if a macro takes two arguments, there must be exactly one comma at the
top level of its argument list. Here are some silly examples using min:

min(, b) 7→ (() < (b) ? () : (b))

min(a,) 7→ ((a) < () ? (a) : ())

min(,) 7→ (() < () ? () : ())

min((,),) 7→ (((,)) < () ? ((,)) : ())

min() error macro "min" requires 2 arguments, but only 1 given

min(,,) error macro "min" passed 3 arguments, but takes just 2

Whitespace is not a preprocessing token, so if a macro foo takes one
argument, foo () and foo () both supply it an empty argument.

Macro parameters appearing inside string literals are not replaced by
their corresponding actual arguments.

#define foo(x) x, "x"
foo(bar) 7→ bar, "x"

See the next subsection for how to insert macro arguments into a string
literal.

The token following the macro call and the last token of the macro ex-
pansion do not become one token even if it looks like they could:

#define foo() abc
foo()def 7→ abc def

26.5.4 Stringification

Sometimes you may want to convert a macro argument into a string con-
stant. Parameters are not replaced inside string constants, but you can use
the # preprocessing operator instead. When a macro parameter is used with
a leading #, preprocessing replaces it with the literal text of the actual argu-

Chapter 26: Preprocessing 184

ment, converted to a string constant. Unlike normal parameter replacement,
the argument is not macro-expanded first. This is called stringification.

There is no way to combine an argument with surrounding text and
stringify it all together. But you can write a series of string constants and
stringified arguments. After preprocessing replaces the stringified arguments
with string constants, the consecutive string constants will be concatenated
into one long string constant (see Section 12.7 [String Constants], page 61).

Here is an example that uses stringification and concatenation of string
constants:

#define WARN_IF(EXP) \
do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \
while (0)

WARN_IF (x == 0);
7→

do { if (x == 0)
fprintf (stderr, "Warning: " "x == 0" "\n"); }

while (0);

The argument for EXP is substituted once, as is, into the if statement, and
once, stringified, into the argument to fprintf. If x were a macro, it would
be expanded in the if statement but not in the string.

The do and while (0) are a kludge to make it possible to write WARN_IF
(arg);. The resemblance of WARN_IF to a function makes that a natural
way to write it. See Section 26.5.10.3 [Swallowing the Semicolon], page 194.

Stringification in C involves more than putting double-quote characters
around the fragment. It also backslash-escapes the quotes surrounding em-
bedded string constants, and all backslashes within string and character
constants, in order to get a valid C string constant with the proper contents.
Thus, stringifying p = "foo\n"; results in "p = \"foo\\n\";". However,
backslashes that are not inside string or character constants are not dupli-
cated: ‘\n’ by itself stringifies to "\n".

All leading and trailing whitespace in text being stringified is ignored.
Any sequence of whitespace in the middle of the text is converted to a single
space in the stringified result. Comments are replaced by whitespace long
before stringification happens, so they never appear in stringified text.

There is no way to convert a macro argument into a character constant.

To stringify the result of expansion of a macro argument, you have to use
two levels of macros, like this:

#define xstr(S) str(S)
#define str(s) #s
#define foo 4
str (foo)

7→ "foo"

Chapter 26: Preprocessing 185

xstr (foo)
7→ xstr (4)
7→ str (4)
7→ "4"

s is stringified when it is used in str, so it is not macro-expanded first.
But S is an ordinary argument to xstr, so it is completely macro-expanded
before xstr itself is expanded (see Section 26.5.10.7 [Argument Prescan],
page 197). Therefore, by the time str gets to its argument text, that text
already been macro-expanded.

26.5.5 Concatenation

It is often useful to merge two tokens into one while expanding macros.
This is called token pasting or token concatenation. The ## preprocessing
operator performs token pasting. When a macro is expanded, the two tokens
on either side of each ## operator are combined into a single token, which
then replaces the ## and the two original tokens in the macro expansion.
Usually both will be identifiers, or one will be an identifier and the other a
preprocessing number. When pasted, they make a longer identifier.

Concatenation into an identifier isn’t the only valid case. It is also possible
to concatenate two numbers (or a number and a name, such as 1.5 and e3)
into a number. Also, multi-character operators such as += can be formed by
token pasting.

However, two tokens that don’t together form a valid token cannot be
pasted together. For example, you cannot concatenate x with +, not in
either order. Trying this issues a warning and keeps the two tokens separate.
Whether it puts white space between the tokens is undefined. It is common
to find unnecessary uses of ## in complex macros. If you get this warning,
it is likely that you can simply remove the ##.

The tokens combined by ## could both come from the macro body, but
then you could just as well write them as one token in the first place. To-
ken pasting is useful when one or both of the tokens comes from a macro
argument. If either of the tokens next to an ## is a parameter name, it is
replaced by its actual argument before ## executes. As with stringification,
the actual argument is not macro-expanded first. If the argument is empty,
that ## has no effect.

Keep in mind that preprocessing converts comments to whitespace before
it looks for uses of macros. Therefore, you cannot create a comment by
concatenating ‘/’ and ‘*’. You can put as much whitespace between ## and
its operands as you like, including comments, and you can put comments in
arguments that will be concatenated.

It is an error to use ## at the beginning or end of a macro body.

Multiple ## operators are handled left-to-right, so that ‘1 ## e ## -2’
pastes into ‘1e-2’. (Right-to-left processing would first generate ‘e-2’, which

Chapter 26: Preprocessing 186

is an invalid token.) When # and ## are used together, they are all handled
left-to-right.

Consider a C program that interprets named commands. There probably
needs to be a table of commands, perhaps an array of structures declared as
follows:

struct command
{

char *name;
void (*function) (void);

};

struct command commands[] =
{

{ "quit", quit_command },
{ "help", help_command },
/* . . . */

};

It would be cleaner not to have to write each command name twice, once
in the string constant and once in the function name. A macro that takes
the name of a command as an argument can make this unnecessary. It can
create the string constant with stringification, and the function name by
concatenating the argument with ‘_command’. Here is how it is done:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{

COMMAND (quit),
COMMAND (help),
/* . . . */

};

26.5.6 Variadic Macros

A macro can be declared to accept a variable number of arguments much
as a function can. The syntax for defining the macro is similar to that of a
function. Here is an example:

#define eprintf(...) fprintf (stderr, __VA_ARGS__)

This kind of macro is called variadic. When the macro is invoked, all the
tokens in its argument list after the last named argument (this macro has
none), including any commas, become the variable argument. This sequence
of tokens replaces the identifier __VA_ARGS__ in the macro body wherever it
appears. Thus, we have this expansion:

eprintf ("%s:%d: ", input_file, lineno)
7→ fprintf (stderr, "%s:%d: ", input_file, lineno)

Chapter 26: Preprocessing 187

The variable argument is completely macro-expanded before it is inserted
into the macro expansion, just like an ordinary argument. You may use the
and ## operators to stringify the variable argument or to paste its leading
or trailing token with another token. (But see below for an important special
case for ##.)

Warning: don’t use the identifier __VA_ARGS__ for anything other than
this.

If your macro is complicated, you may want a more descriptive name for
the variable argument than __VA_ARGS__. You can write an argument name
immediately before the ‘...’; that name is used for the variable argument.1

The eprintf macro above could be written thus:

#define eprintf(args...) fprintf (stderr, args)

A variadic macro can have named arguments as well as variable argu-
ments, so eprintf can be defined like this, instead:

#define eprintf(format, ...) \
fprintf (stderr, format, __VA_ARGS__)

This formulation is more descriptive, but what if you want to specify a format
string that takes no arguments? In GNU C, you can omit the comma before
the variable arguments if they are empty, but that puts an extra comma in
the expansion:

eprintf ("success!\n")
7→ fprintf(stderr, "success!\n",);

That’s an error in the call to fprintf.

To get rid of that comma, the ## token paste operator has a special
meaning when placed between a comma and a variable argument.2 If you
write

#define eprintf(format, ...) \
fprintf (stderr, format, ##__VA_ARGS__)

then use the macro eprintf with empty variable arguments, ## deletes the
preceding comma.

eprintf ("success!\n")
7→ fprintf(stderr, "success!\n");

This does not happen if you pass an empty argument, nor does it happen if
the token preceding ## is anything other than a comma.

When the only macro parameter is a variable arguments parameter, and the
macro call has no argument at all, it is not obvious whether that means
an empty argument or a missing argument. Should the comma be kept, or
deleted? The C standard says to keep the comma, but the preexisting GNU
C extension deleted the comma. Nowadays, GNU C retains the comma when
implementing a specific C standard, and deletes it otherwise.

1 GNU C extension.
2 GNU C extension.

Chapter 26: Preprocessing 188

C99 mandates that the only place the identifier __VA_ARGS__ can appear
is in the replacement list of a variadic macro. It may not be used as a macro
name, macro parameter name, or within a different type of macro. It may
also be forbidden in open text; the standard is ambiguous. We recommend
you avoid using that name except for its special purpose.

Variadic macros where you specify the parameter name is a GNU C fea-
ture that has been supported for a long time. Standard C, as of C99, supports
only the form where the parameter is called __VA_ARGS__. For portability to
previous versions of GNU C you should use only named variable argument
parameters. On the other hand, for portability to other C99 compilers, you
should use only __VA_ARGS__.

26.5.7 Predefined Macros

Several object-like macros are predefined; you use them without supplying
their definitions. Here we explain the ones user programs often need to use.
Many other macro names starting with ‘__’ are predefined; in general, you
should not define such macro names yourself.

__FILE__ This macro expands to the name of the current input file, in
the form of a C string constant. This is the full name by
which the GCC opened the file, not the short name specified
in #include or as the input file name argument. For example,
"/usr/local/include/myheader.h" is a possible expansion of
this macro.

__LINE__ This macro expands to the current input line number, in the
form of a decimal integer constant. While we call it a predefined
macro, it’s a pretty strange macro, since its “definition” changes
with each new line of source code.

__func__
__FUNCTION__

These names are like variables that have as value a string con-
taining the name of the current function definition. They are
not really macros, but this is the best place to mention them.

__FUNCTION__ is the name that has been defined in GNU C since
time immemorial; __func__ is defined by the C standard. With
the following conditionals, you can use whichever one is defined.

#if __STDC_VERSION__ < 199901L
if __GNUC__ >= 2
define __func__ __FUNCTION__
else
define __func__ "<unknown>"
endif
#endif

Chapter 26: Preprocessing 189

__PRETTY_FUNCTION__
This is equivalent to __FUNCTION__ in C, but in C++ the string
includes argument type information as well. It is a GNU C
extension.

Those features are useful in generating an error message to report an
inconsistency detected by the program; the message can state the source
line where the inconsistency was detected. For example,

fprintf (stderr, "Internal error: "
"negative string length "
"in function %s "
"%d at %s, line %d.",

__func__, length, __FILE__, __LINE__);

A #line directive changes __LINE__, and may change __FILE__ as well.
See Section 26.8 [Line Control], page 204.

__DATE__ This macro expands to a string constant that describes the date
of compilation. The string constant contains eleven characters
and looks like "Feb 12 1996". If the day of the month is just
one digit, an extra space precedes it so that the date is always
eleven characters.

If the compiler cannot determine the current date, it emits a
warning messages (once per compilation) and __DATE__ expands
to "??? ?? ????".

We deprecate the use of __DATE__ for the sake of reproducible
compilation.

__TIME__ This macro expands to a string constant that describes the time
of compilation. The string constant contains eight characters
and looks like "23:59:01".

If the compiler cannot determine the current time, it emits a
warning message (once per compilation) and __TIME__ expands
to "??:??:??".

We deprecate the use of __TIME__ for the sake of reproducible
compilation.

__STDC__ In normal operation, this macro expands to the constant 1, to
signify that this compiler implements ISO Standard C.

__STDC_VERSION__
This macro expands to the C Standard’s version number, a long
integer constant of the form yyyymmL where yyyy and mm are
the year and month of the Standard version. This states which
version of the C Standard the compiler implements.

The current default value is 201112L, which signifies the C 2011
standard.

Chapter 26: Preprocessing 190

__STDC_HOSTED__
This macro is defined, with value 1, if the compiler’s target is
a hosted environment. A hosted environment provides the full
facilities of the standard C library.

The rest of the predefined macros are GNU C extensions.

__COUNTER__
This macro expands to sequential integral values starting from 0.
In other words, each time the program uses this acro, it generates
the next successive integer. This, with the ## operator, provides
a convenient means for macros to generate unique identifiers.

__GNUC__
__GNUC_MINOR__
__GNUC_PATCHLEVEL__

These macros expand to the major version, minor version, and
patch level of the compiler, as integer constants. For example,
GCC 3.2.1 expands __GNUC__ to 3, __GNUC_MINOR__ to 2, and
__GNUC_PATCHLEVEL__ to 1.

If all you need to know is whether or not your program is being
compiled by GCC, or a non-GCC compiler that claims to accept
the GNU C extensions, you can simply test __GNUC__. If you
need to write code that depends on a specific version, you must
check more carefully. Each change in the minor version resets
the patch level to zero; each change in the major version (which
happens rarely) resets the minor version and the patch level to
zero. To use the predefined macros directly in the conditional,
write it like this:

/* Test for version 3.2.0 or later. */
#if __GNUC__ > 3 || \

(__GNUC__ == 3 && (__GNUC_MINOR__ > 2 || \
(__GNUC_MINOR__ == 2 && \
__GNUC_PATCHLEVEL__ > 0))

Another approach is to use the predefined macros to calculate a
single number, then compare that against a threshold:

#define GCC_VERSION (__GNUC__ * 10000 \
+ __GNUC_MINOR__ * 100 \
+ __GNUC_PATCHLEVEL__)

/* . . . */
/* Test for GCC > 3.2.0 */
#if GCC_VERSION > 30200

Many people find this form easier to understand.

__VERSION__
This macro expands to a string constant that describes the ver-
sion of the compiler in use. You should not rely on its contents’

Chapter 26: Preprocessing 191

having any particular form, but you can count on it to contain
at least the release number.

__TIMESTAMP__
This macro expands to a string constant that describes the date
and time of the last modification of the current source file. The
string constant contains abbreviated day of the week, month,
day of the month, time in hh:mm:ss form, and the year, in the
format "Sun Sep 16 01:03:52 1973". If the day of the month
is less than 10, it is padded with a space on the left.

If GCC cannot determine that information date, it emits a warn-
ing message (once per compilation) and __TIMESTAMP__ expands
to "??? ??? ?? ??:??:?? ????".

We deprecate the use of this macro for the sake of reproducible
compilation.

26.5.8 Undefining and Redefining Macros

You can undefine a macro with the #undef directive. #undef takes a single
argument, the name of the macro to undefine. You use the bare macro name,
even if the macro is function-like. It is an error if anything appears on the
line after the macro name. #undef has no effect if the name is not a macro.

#define FOO 4
x = FOO; 7→ x = 4;
#undef FOO
x = FOO; 7→ x = FOO;

Once a macro has been undefined, that identifier may be redefined as a
macro by a subsequent #define directive. The new definition need not have
any resemblance to the old definition.

You can define a macro again without first undefining it only if the new
definition is effectively the same as the old one. Two macro definitions are
effectively the same if:

• Both are the same type of macro (object- or function-like).

• All the tokens of the replacement list are the same.

• If there are any parameters, they are the same.

• Whitespace appears in the same places in both. It need not be exactly
the same amount of whitespace, though. Remember that comments
count as whitespace.

These definitions are effectively the same:

#define FOUR (2 + 2)
#define FOUR (2 + 2)
#define FOUR (2 /* two */ + 2)

but these are not:

#define FOUR (2 + 2)

Chapter 26: Preprocessing 192

#define FOUR (2+2)
#define FOUR (2 * 2)
#define FOUR(score,and,seven,years,ago) (2 + 2)

This allows two different header files to define a common macro.

You can redefine an existing macro with #define, but redefining an ex-
isting macro name with a different definition results in a warning.

26.5.9 Directives Within Macro Arguments

GNU C permits and handles preprocessing directives in the text provided
as arguments for a macro. That case is undefined in the C standard. but in
GNU C conditional directives in macro arguments are clear and valid.

A paradoxical case is to redefine a macro within the call to that same
macro. What happens is, the new definition takes effect in time for pre-
expansion of all the arguments, then the original definition is expanded to
replace the call. Here is a pathological example:

#define f(x) x x
f (first f second
#undef f
#define f 2
f)

which expands to

first 2 second 2 first 2 second 2

with the semantics described above. We suggest you avoid writing code
which does this sort of thing.

26.5.10 Macro Pitfalls

In this section we describe some special rules that apply to macros and
macro expansion, and point out certain cases in which the rules have counter-
intuitive consequences that you must watch out for.

26.5.10.1 Misnesting

When a macro is called with arguments, the arguments are substituted into
the macro body and the result is checked, together with the rest of the
input file, for more macro calls. It is possible to piece together a macro call
coming partially from the macro body and partially from the arguments.
For example,

#define twice(x) (2*(x))
#define call_with_1(x) x(1)
call_with_1 (twice)

7→ twice(1)
7→ (2*(1))

Macro definitions do not have to have balanced parentheses. By writing
an unbalanced open parenthesis in a macro body, it is possible to create a

Chapter 26: Preprocessing 193

macro call that begins inside the macro body but ends outside of it. For
example,

#define strange(file) fprintf (file, "%s %d",
/* . . . */
strange(stderr) p, 35)

7→ fprintf (stderr, "%s %d", p, 35)

The ability to piece together a macro call can be useful, but the use of
unbalanced open parentheses in a macro body is just confusing, and should
be avoided.

26.5.10.2 Operator Precedence Problems

You may have noticed that in most of the macro definition examples shown
above, each occurrence of a macro parameter name had parentheses around
it. In addition, another pair of parentheses usually surrounds the entire
macro definition. Here is why it is best to write macros that way.

Suppose you define a macro as follows,

#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is to
compute how many int objects are needed to hold a certain number of char
objects.) Then suppose it is used as follows:

a = ceil_div (b & c, sizeof (int));
7→ a = (b & c + sizeof (int) - 1) / sizeof (int);

This does not do what is intended. The operator-precedence rules of C make
it equivalent to this:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

What we want is this:

a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as

#define ceil_div(x, y) ((x) + (y) - 1) / (y)

provides the desired result.

Unintended grouping can result in another way. Consider sizeof ceil_
div(1, 2). That has the appearance of a C expression that would compute
the size of the type of ceil_div (1, 2), but in fact it means something very
different. Here is what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by two. The precedence
rules have put the division outside the sizeof when it was intended to be
inside.

Parentheses around the entire macro definition prevent such problems.
Here, then, is the recommended way to define ceil_div:

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

Chapter 26: Preprocessing 194

26.5.10.3 Swallowing the Semicolon

Often it is desirable to define a macro that expands into a compound state-
ment. Consider, for example, the following macro, that advances a pointer
(the parameter p says where to find it) across whitespace characters:

#define SKIP_SPACES(p, limit) \
{ char *lim = (limit); \

while (p < lim) { \
if (*p++ != ’ ’) { \
p--; break; }}}

Here backslash-newline is used to split the macro definition, which must be
a single logical line, so that it resembles the way such code would be laid
out if not part of a macro definition.

A call to this macro might be SKIP_SPACES (p, lim). Strictly speaking,
the call expands to a compound statement, which is a complete statement
with no need for a semicolon to end it. However, since it looks like a function
call, it minimizes confusion if you can use it like a function call, writing a
semicolon afterward, as in SKIP_SPACES (p, lim);

This can cause trouble before else statements, because the semicolon is
actually a null statement. Suppose you write

if (*p != 0)
SKIP_SPACES (p, lim);

else /* . . . */

The presence of two statements—the compound statement and a null
statement—in between the if condition and the else makes invalid C code.

The definition of the macro SKIP_SPACES can be altered to solve this
problem, using a do . . . while statement. Here is how:

#define SKIP_SPACES(p, limit) \
do { char *lim = (limit); \

while (p < lim) { \
if (*p++ != ’ ’) { \
p--; break; }}} \

while (0)

Now SKIP_SPACES (p, lim); expands into

do { /* . . . */ } while (0);

which is one statement. The loop executes exactly once; most compilers
generate no extra code for it.

26.5.10.4 Duplication of Side Effects

Many C programs define a macro min, for “minimum”, like this:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect, as
shown here,

next = min (x + y, foo (z));

Chapter 26: Preprocessing 195

it expands as follows:

next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where x + y has been substituted for X and foo (z) for Y.

The function foo is used only once in the statement as it appears in the
program, but the expression foo (z) has been substituted twice into the
macro expansion. As a result, foo might be called twice when the statement
is executed. If it has side effects or if it takes a long time to compute, that
may be undesirable. We say that min is an unsafe macro.

The best solution to this problem is to define min in a way that computes
the value of foo (z) only once. In general, that requires using __auto_type
(see Section 20.4 [Auto Type], page 131). How to use it for this is described
in the following section. See Section 26.5.10.5 [Macros and Auto Type],
page 195.

Otherwise, you will need to be careful when using the macro min. For
example, you can calculate the value of foo (z), save it in a variable, and
use that variable in min:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
/* . . . */
{

int tem = foo (z);
next = min (x + y, tem);

}

(where we assume that foo returns type int).

When the repeated value appears as the condition of the ?: operator and
again as its iftrue expression, you can avoid repeated execution by omitting
the iftrue expression, like this:

#define x_or_y(X, Y) ((X) ? : (Y))

In GNU C, this expands to use the first macro argument’s value if that isn’t
zero. If that’s zero, it compiles the second argument and uses that value.
See Section 8.4 [Conditional Expression], page 41.

26.5.10.5 Using __auto_type for Local Variables

The operator __auto_type makes it possible to define macros that can work
on any data type even though they need to generate local variable declara-
tions. See Section 20.4 [Auto Type], page 131.

For instance, here’s how to define a safe “maximum” macro that operates
on any arithmetic type and computes each of its arguments exactly once:

#define max(a,b) \
({ __auto_type _a = (a); \

__auto_type _b = (b); \
_a > _b ? _a : _b; })

The ‘({ ... })’ notation produces statement expression—a statement
that can be used as an expression (see Section 19.15 [Statement Exprs],

Chapter 26: Preprocessing 196

page 125). Its value is the value of its last statement. This permits us to
define local variables and store each argument value into one.

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for a and b. Underscore followed by a lower
case letter won’t be predefined by the system in any way.

26.5.10.6 Self-Referential Macros

A self-referential macro is one whose name appears in its definition. Recall
that all macro definitions are rescanned for more macros to replace. If the
self-reference were considered a use of the macro, it would produce an in-
finitely large expansion. To prevent this, the self-reference is not considered
a macro call: preprocessing leaves it unchanged. Consider an example:

#define foo (4 + foo)

where foo is also a variable in your program.

Following the ordinary rules, each reference to foo will expand into (4 +
foo); then this will be rescanned and will expand into (4 + (4 + foo)); and
so on until the computer runs out of memory.

The self-reference rule cuts this process short after one step, at (4 + foo).
Therefore, this macro definition has the possibly useful effect of causing the
program to add 4 to the value of foo wherever foo is referred to.

In most cases, it is a bad idea to take advantage of this feature. A person
reading the program who sees that foo is a variable will not expect that
it is a macro as well. The reader will come across the identifier foo in the
program and think its value should be that of the variable foo, whereas in
fact the value is four greater.

It is useful to make a macro definition that expands to the macro name
itself. If you write

#define EPERM EPERM

then the macro EPERM expands to EPERM. Effectively, preprocessing leaves it
unchanged in the source code. You can tell that it’s a macro with #ifdef.
You might do this if you want to define numeric constants with an enum, but
have #ifdef be true for each constant.

If a macro x expands to use a macro y, and the expansion of y refers to
the macro x, that is an indirect self-reference of x. x is not expanded in this
case either. Thus, if we have

#define x (4 + y)
#define y (2 * x)

then x and y expand as follows:

Chapter 26: Preprocessing 197

x 7→ (4 + y)
7→ (4 + (2 * x))

y 7→ (2 * x)
7→ (2 * (4 + y))

Each macro is expanded when it appears in the definition of the other macro,
but not when it indirectly appears in its own definition.

26.5.10.7 Argument Prescan

Macro arguments are completely macro-expanded before they are substi-
tuted into a macro body, unless they are stringified or pasted with other
tokens. After substitution, the entire macro body, including the substituted
arguments, is scanned again for macros to be expanded. The result is that
the arguments are scanned twice to expand macro calls in them.

Most of the time, this has no effect. If the argument contained any macro
calls, they were expanded during the first scan. The result therefore contains
no macro calls, so the second scan does not change it. If the argument were
substituted as given, with no prescan, the single remaining scan would find
the same macro calls and produce the same results.

You might expect the double scan to change the results when a
self-referential macro is used in an argument of another macro (see
Section 26.5.10.6 [Self-Referential Macros], page 196): the self-referential
macro would be expanded once in the first scan, and a second time in the
second scan. However, this is not what happens. The self-references that
do not expand in the first scan are marked so that they will not expand in
the second scan either.

You might wonder, “Why mention the prescan, if it makes no difference?
And why not skip it and make preprocessing go faster?” The answer is that
the prescan does make a difference in three special cases:

• Nested calls to a macro.

We say that nested calls to a macro occur when a macro’s argument
contains a call to that very macro. For example, if f is a macro that
expects one argument, f (f (1)) is a nested pair of calls to f. The
desired expansion is made by expanding f (1) and substituting that
into the definition of f. The prescan causes the expected result to
happen. Without the prescan, f (1) itself would be substituted as an
argument, and the inner use of f would appear during the main scan as
an indirect self-reference and would not be expanded.

• Macros that call other macros that stringify or concatenate.

If an argument is stringified or concatenated, the prescan does not oc-
cur. If you want to expand a macro, then stringify or concatenate its
expansion, you can do that by causing one macro to call another macro
that does the stringification or concatenation. For instance, if you have

#define AFTERX(x) X_ ## x

Chapter 26: Preprocessing 198

#define XAFTERX(x) AFTERX(x)
#define TABLESIZE 1024
#define BUFSIZE TABLESIZE

then AFTERX(BUFSIZE) expands to X_BUFSIZE, and XAFTERX(BUFSIZE)
expands to X_1024. (Not to X_TABLESIZE. Prescan always does a com-
plete expansion.)

• Macros used in arguments, whose expansions contain unshielded com-
mas.

This can cause a macro expanded on the second scan to be called with
the wrong number of arguments. Here is an example:

#define foo a,b
#define bar(x) lose(x)
#define lose(x) (1 + (x))

We would like bar(foo) to turn into (1 + (foo)), which would then
turn into (1 + (a,b)). Instead, bar(foo) expands into lose(a,b),
which gives an error because lose requires a single argument. In this
case, the problem is easily solved by the same parentheses that ought
to be used to prevent misnesting of arithmetic operations:

#define foo (a,b)
or

#define bar(x) lose((x))

The extra pair of parentheses prevents the comma in foo’s definition
from being interpreted as an argument separator.

26.6 Conditionals
A conditional is a preprocessing directive that controls whether or not to
include a chunk of code in the final token stream that is compiled. Prepro-
cessing conditionals can test arithmetic expressions, or whether a name is
defined as a macro, or both together using the special defined operator.

A preprocessing conditional in C resembles in some ways an if statement
in C, but it is important to understand the difference between them. The
condition in an if statement is tested during the execution of your program.
Its purpose is to allow your program to behave differently from run to run,
depending on the data it is operating on. The condition in a preprocessing
conditional directive is tested when your program is compiled. Its purpose
is to allow different code to be included in the program depending on the
situation at the time of compilation.

Sometimes this distinction makes no practical difference. GCC and other
modern compilers often do test if statements when a program is compiled,
if their conditions are known not to vary at run time, and eliminate code
that can never be executed. If you can count on your compiler to do this,
you may find that your program is more readable if you use if statements
with constant conditions (perhaps determined by macros). Of course, you

Chapter 26: Preprocessing 199

can only use this to exclude code, not type definitions or other preprocessing
directives, and you can only do it if the file remains syntactically valid when
that code is not used.

26.6.1 Uses of Conditional Directives

There are three usual reasons to use a preprocessing conditional.

• A program may need to use different code depending on the machine
or operating system it is to run on. In some cases the code for one
operating system may be erroneous on another operating system; for
example, it might refer to data types or constants that do not exist
on the other system. When this happens, it is not enough to avoid
executing the invalid code. Its mere presence will cause the compiler
to reject the program. With a preprocessing conditional, the offending
code can be effectively excised from the program when it is not valid.

• You may want to be able to compile the same source file into two differ-
ent programs. One version might make frequent time-consuming consis-
tency checks on its intermediate data, or print the values of those data
for debugging, and the other not.

• A conditional whose condition is always false is one way to exclude code
from the program but keep it as a sort of comment for future reference.

Simple programs that do not need system-specific logic or complex de-
bugging hooks generally will not need to use preprocessing conditionals.

26.6.2 Syntax of Preprocessing Conditionals

A preprocessing conditional begins with a conditional directive: #if, #ifdef
or #ifndef.

26.6.2.1 The #ifdef directive

The simplest sort of conditional is

#ifdef MACRO

controlled text

#endif /* MACRO */

This block is called a conditional group. The body, controlled text, will
be included in compilation if and only if MACRO is defined. We say that
the conditional succeeds if MACRO is defined, fails if it is not.

The controlled text inside a conditional can include preprocessing direc-
tives. They are executed only if the conditional succeeds. You can nest
conditional groups inside other conditional groups, but they must be com-
pletely nested. In other words, #endif always matches the nearest #ifdef
(or #ifndef, or #if). Also, you cannot start a conditional group in one file
and end it in another.

Chapter 26: Preprocessing 200

Even if a conditional fails, the controlled text inside it is still run through
initial transformations and tokenization. Therefore, it must all be lexically
valid C. Normally the only way this matters is that all comments and string
literals inside a failing conditional group must still be properly ended.

The comment following the #endif is not required, but it is a good prac-
tice if there is a lot of controlled text, because it helps people match the
#endif to the corresponding #ifdef.

Older programs sometimes put macro directly after the #endif without
enclosing it in a comment. This is invalid code according to the C standard,
but it only causes a warning in GNU C. It never affects which #ifndef the
#endif matches.

Sometimes you wish to use some code if a macro is not defined. You
can do this by writing #ifndef instead of #ifdef. One common use of
#ifndef is to include code only the first time a header file is included. See
Section 26.4.4 [Once-Only Headers], page 177.

Macro definitions can vary between compilations for several reasons. Here
are some samples.

• Some macros are predefined on each kind of machine (see Section
“System-specific Predefined Macros” in Using the GNU Compiler Col-
lection). This allows you to provide code specially tuned for a particular
machine.

• System header files define more macros, associated with the features
they implement. You can test these macros with conditionals to avoid
using a system feature on a machine where it is not implemented.

• Macros can be defined or undefined with the -D and -U command-line
options when you compile the program. You can arrange to compile
the same source file into two different programs by choosing a macro
name to specify which program you want, writing conditionals to test
whether or how this macro is defined, and then controlling the state of
the macro with command-line options, perhaps set in the file Makefile.
See Section “Invoking GCC” in Using the GNU Compiler Collection.

• Your program might have a special header file (often called config.h)
that is adjusted when the program is compiled. It can define or not
define macros depending on the features of the system and the desired
capabilities of the program. The adjustment can be automated by a
tool such as autoconf, or done by hand.

26.6.2.2 The #if directive

The #if directive allows you to test the value of an integer arithmetic ex-
pression, rather than the mere existence of one macro. Its syntax is

Chapter 26: Preprocessing 201

#if expression

controlled text

#endif /* expression */

expression is a C expression of integer type, subject to stringent restric-
tions so its value can be computed at compile time. It may contain

• Integer constants.

• Character constants, which are interpreted as they would be in normal
code.

• Arithmetic operators for addition, subtraction, multiplication, division,
bitwise operations, shifts, comparisons, and logical operations (&& and
||). The latter two obey the usual short-circuiting rules of standard C.

• Macros. All macros in the expression are expanded before actual com-
putation of the expression’s value begins.

• Uses of the defined operator, which lets you check whether macros are
defined in the middle of an #if.

• Identifiers that are not macros, which are all considered to be the num-
ber zero. This allows you to write #if MACRO instead of #ifdef MACRO,
if you know that MACRO, when defined, will always have a nonzero
value. Function-like macros used without their function call parenthe-
ses are also treated as zero.

In some contexts this shortcut is undesirable. The -Wundef requests
warnings for any identifier in an #if that is not defined as a macro.

Preprocessing does not know anything about the data types of C. There-
fore, sizeof operators are not recognized in #if; sizeof is simply an iden-
tifier, and if it is not a macro, it stands for zero. This is likely to make the
expression invalid. Preprocessing does not recognize enum constants; they
too are simply identifiers, so if they are not macros, they stand for zero.

Preprocessing calculates the value of expression, and carries out all calcu-
lations in the widest integer type known to the compiler; on most machines
supported by GNU C this is 64 bits. This is not the same rule as the compiler
uses to calculate the value of a constant expression, and may give different
results in some cases. If the value comes out to be nonzero, the #if succeeds
and the controlled text is compiled; otherwise it is skipped.

26.6.2.3 The defined test

The special operator defined is used in #if and #elif expressions to test
whether a certain name is defined as a macro. defined name and defined
(name) are both expressions whose value is 1 if name is defined as a macro at
the current point in the program, and 0 otherwise. Thus, #if defined MACRO
is precisely equivalent to #ifdef MACRO.

Chapter 26: Preprocessing 202

defined is useful when you wish to test more than one macro for existence
at once. For example,

#if defined (__arm__) || defined (__PPC__)

would succeed if either of the names __arm__ or __PPC__ is defined as a
macro—in other words, when compiling for ARM processors or PowerPC
processors.

Conditionals written like this:

#if defined BUFSIZE && BUFSIZE >= 1024

can generally be simplified to just #if BUFSIZE >= 1024, since if BUFSIZE is
not defined, it will be interpreted as having the value zero.

In GCC, you can include defined as part of another macro definition,
like this:

#define MACRO_DEFINED(X) defined X

#if MACRO_DEFINED(BUFSIZE)

which would expand the #if expression to:

#if defined BUFSIZE

Generating defined in this way is a GNU C extension.

26.6.2.4 The #else directive

The #else directive can be added to a conditional to provide alternative
text to be used if the condition fails. This is what it looks like:

#if expression
text-if-true
#else /* Not expression */
text-if-false
#endif /* Not expression */

If expression is nonzero, the text-if-true is included and the text-if-false is
skipped. If expression is zero, the opposite happens.

You can use #else with #ifdef and #ifndef, too.

26.6.2.5 The #elif directive

One common case of nested conditionals is used to check for more than two
possible alternatives. For example, you might have

#if X == 1
/* . . . */
#else /* X != 1 */
#if X == 2
/* . . . */
#else /* X != 2 */
/* . . . */
#endif /* X != 2 */
#endif /* X != 1 */

Chapter 26: Preprocessing 203

Another conditional directive, #elif, allows this to be abbreviated as
follows:

#if X == 1
/* . . . */
#elif X == 2
/* . . . */
#else /* X != 2 and X != 1*/
/* . . . */
#endif /* X != 2 and X != 1*/

#elif stands for “else if”. Like #else, it goes in the middle of a con-
ditional group and subdivides it; it does not require a matching #endif of
its own. Like #if, the #elif directive includes an expression to be tested.
The text following the #elif is processed only if the original #if-condition
failed and the #elif condition succeeds.

More than one #elif can go in the same conditional group. Then the
text after each #elif is processed only if the #elif condition succeeds after
the original #if and all previous #elif directives within it have failed.

#else is allowed after any number of #elif directives, but #elif may
not follow #else.

26.6.3 Deleted Code

If you replace or delete a part of the program but want to keep the old code
in the file for future reference, commenting it out is not so straightforward
in C. Block comments do not nest, so the first comment inside the old code
will end the commenting-out. The probable result is a flood of syntax errors.

One way to avoid this problem is to use an always-false conditional in-
stead. For instance, put #if 0 before the deleted code and #endif after it.
This works even if the code being turned off contains conditionals, but they
must be entire conditionals (balanced #if and #endif).

Some people use #ifdef notdef instead. This is risky, because notdef
might be accidentally defined as a macro, and then the conditional would
succeed. #if 0 can be counted on to fail.

Do not use #if 0 around text that is not C code. Use a real comment,
instead. The interior of #if 0 must consist of complete tokens; in particular,
single-quote characters must balance. Comments often contain unbalanced
single-quote characters (known in English as apostrophes). These confuse
#if 0. They don’t confuse ‘/*’.

26.7 Diagnostics
The directive #error reports a fatal error. The tokens forming the rest of
the line following #error are used as the error message.

Chapter 26: Preprocessing 204

The usual place to use #error is inside a conditional that detects a combi-
nation of parameters that you know the program does not properly support.
For example,

#if !defined(UNALIGNED_INT_ASM_OP) && defined(DWARF2_DEBUGGING_INFO)

#error "DWARF2_DEBUGGING_INFO requires UNALIGNED_INT_ASM_OP."

#endif

The directive #warning is like #error, but it reports a warning instead of
an error. The tokens following #warning are used as the warning message.

You might use #warning in obsolete header files, with a message saying
which header file to use instead.

Neither #error nor #warning macro-expands its argument. Internal
whitespace sequences are each replaced with a single space. The line must
consist of complete tokens. It is wisest to make the argument of these direc-
tives be a single string constant; this avoids problems with apostrophes and
the like.

26.8 Line Control
Due to C’s widespread availability and low-level nature, it is often used as
the target language for translation of other languages, or for the output of
lexical analyzers and parsers (e.g., lex/flex and yacc/bison). Line control
enables the user to track diagnostics back to the location in the original
language.

The C compiler knows the location in the source file where each token
came from: file name, starting line and column, and final line and column.
(Column numbers are used only for error messages.)

When a program generates C source code, as the Bison parser generator
does, often it copies some of that C code from another file. For instance
parts of the output from Bison are generated from scratch or come from a
standard parser file, but Bison copies the rest from Bison’s input file. Errors
in that code, at compile time or run time, should refer to that file, which
is the real source code. To make that happen, Bison generates line-control
directives that the C compiler understands.

#line is a directive that specifies the original line number and source file
name for subsequent code. #line has three variants:

#line linenum
linenum is a non-negative decimal integer constant. It specifies
the line number that should be reported for the following line of
input. Subsequent lines are counted from linenum.

#line linenum filename
linenum is the same as for the first form, and has the same
effect. In addition, filename is a string constant that specifies
the source file name. Subsequent source lines are recorded as
coming from that file, until something else happens to change

Chapter 26: Preprocessing 205

that. filename is interpreted according to the normal rules for a
string constant. Backslash escapes are interpreted, in contrast
to #include.

#line anything else
anything else is checked for macro calls, which are expanded.
The result should match one of the above two forms.

#line directives alter the results of the __FILE__ and __LINE__ symbols
from that point on. See Section 26.5.7 [Predefined Macros], page 188.

26.9 Null Directive
The null directive consists of a # followed by a newline, with only whitespace
and comments in between. It has no effect on the output of the compiler.

206

27 Integers in Depth

This chapter explains the machine-level details of integer types: how they
are represented as bits in memory, and the range of possible values for each
integer type.

27.1 Integer Representations
Modern computers store integer values as binary (base-2) numbers that oc-
cupy a single unit of storage, typically either as an 8-bit char, a 16-bit short
int, a 32-bit int, or possibly, a 64-bit long long int. Whether a long int
is a 32-bit or a 64-bit value is system dependent.1

The macro CHAR_BIT, defined in limits.h, gives the number of bits in
type char. On any real operating system, the value is 8.

The fixed sizes of numeric types necessarily limits their range of values,
and the particular encoding of integers decides what that range is.

For unsigned integers, the entire space is used to represent a nonnegative
value. Signed integers are stored using two’s-complement representation:
a signed integer with n bits has a range from −2(n−1) to −1 to 0 to 1 to
+2(n−1) − 1, inclusive. The leftmost, or high-order, bit is called the sign bit.

There is only one value that means zero, and the most negative num-
ber lacks a positive counterpart. As a result, negating that number causes
overflow; in practice, its result is that number back again. For example,
a two’s-complement signed 8-bit integer can represent all decimal numbers
from −128 to +127. We will revisit that peculiarity shortly.

Decades ago, there were computers that didn’t use two’s-complement
representation for integers (see Chapter 27 [Integers in Depth], page 206),
but they are long gone and not worth any effort to support.

When an arithmetic operation produces a value that is too big to rep-
resent, the operation is said to overflow. In C, integer overflow does not
interrupt the control flow or signal an error. What it does depends on
signedness.

For unsigned arithmetic, the result of an operation that overflows is the
n low-order bits of the correct value. If the correct value is representable in
n bits, that is always the result; thus we often say that “integer arithmetic
is exact,” omitting the crucial qualifying phrase “as long as the exact result
is representable.”

In principle, a C program should be written so that overflow never occurs
for signed integers, but in GNU C you can specify various ways of handling
such overflow (see Section 6.3 [Integer Overflow], page 25).

Integer representations are best understood by looking at a table for a
tiny integer size; here are the possible values for an integer with three bits:

1 In theory, any of these types could have some other size, bit it’s not worth even a
minute to cater to that possibility. It never happens on GNU/Linux.

Chapter 27: Integers in Depth 207

Unsigned Signed Bits 2s Complement
0 0 000 000 (0)
1 1 001 111 (-1)
2 2 010 110 (-2)
3 3 011 101 (-3)
4 -4 100 100 (-4)
5 -3 101 011 (3)
6 -2 110 010 (2)
7 -1 111 001 (1)

The parenthesized decimal numbers in the last column represent the
signed meanings of the two’s-complement of the line’s value. Recall that,
in two’s-complement encoding, the high-order bit is 0 when the number is
nonnegative.

We can now understand the peculiar behavior of negation of the most
negative two’s-complement integer: start with 0b100, invert the bits to get
0b011, and add 1: we get 0b100, the value we started with.

We can also see overflow behavior in two’s-complement:

3 + 1 = 0b011 + 0b001 = 0b100 = (-4)
3 + 2 = 0b011 + 0b010 = 0b101 = (-3)
3 + 3 = 0b011 + 0b011 = 0b110 = (-2)

A sum of two nonnegative signed values that overflows has a 1 in the sign
bit, so the exact positive result is truncated to a negative value.

27.2 Maximum and Minimum Values
For each primitive integer type, there is a standard macro defined in
limits.h that gives the largest value that type can hold. For instance,
for type int, the maximum value is INT_MAX. On a 32-bit computer, that
is equal to 2,147,483,647. The maximum value for unsigned int is UINT_
MAX, which on a 32-bit computer is equal to 4,294,967,295. Likewise, there
are SHRT_MAX, LONG_MAX, and LLONG_MAX, and corresponding unsigned limits
USHRT_MAX, ULONG_MAX, and ULLONG_MAX.

Since there are three ways to specify a char type, there are also three
limits: CHAR_MAX, SCHAR_MAX, and UCHAR_MAX.

For each type that is or might be signed, there is another symbol that
gives the minimum value it can hold. (Just replace MAX with MIN in the
names listed above.) There is no minimum limit symbol for types specified
with unsigned because the minimum for them is universally zero.

INT_MIN is not the negative of INT_MAX. In two’s-complement representa-
tion, the most negative number is 1 less than the negative of the most positive
number. Thus, INT_MIN on a 32-bit computer has the value −2,147,483,648.
You can’t actually write the value that way in C, since it would overflow.
That’s a good reason to use INT_MIN to specify that value. Its definition is
written to avoid overflow.

208

28 Floating Point in Depth

28.1 Floating-Point Representations
Storing numbers as floating point allows representation of numbers with
fractional values, in a range larger than that of hardware integers. A floating-
point number consists of a sign bit, a significand (also called the mantissa),
and a power of a fixed base. GNU C uses the floating-point representations
specified by the IEEE 754-2008 Standard for Floating-Point Arithmetic.

The IEEE 754-2008 specification defines basic binary floating-point for-
mats of five different sizes: 16-bit, 32-bit, 64-bit, 128-bit, and 256-bit. The
formats of 32, 64, and 128 bits are used for the standard C types float,
double, and long double. GNU C supports the 16-bit floating point type
_Float16 on some platforms, but does not support the 256-bit floating point
type.

Each of the formats encodes the floating-point number as a sign bit. After
this comes an exponent that specifies a power of 2 (with a fixed offset). Then
comes the significand.

The first bit of the significand, before the binary point, is always 1, so
there is no need to store it in memory. It is called the hidden bit because it
doesn’t appear in the floating-point number as used in the computer itself.

All of those floating-point formats are sign-magnitude representations, so
+0 and −0 are different values.

Besides the IEEE 754 format 128-bit float, GNU C also offers a format
consisting of a pair of 64-bit floating point numbers. This lacks the full
exponent range of the IEEE 128-bit format, but is useful when the underlying
hardware platform does not support that.

28.2 Floating-Point Type Specifications
The standard library header file float.h defines a number of constants
that describe the platform’s implementation of floating-point types float,
double and long double. They include:

FLT_MIN
DBL_MIN
LDBL_MIN Defines the minimum normalized positive floating-point values

that can be represented with the type.

FLT_HAS_SUBNORM
DBL_HAS_SUBNORM
LDBL_HAS_SUBNORM

Defines if the floating-point type supports subnormal (or “denor-
malized”) numbers or not (see [subnormal numbers], page 210).

Chapter 28: Floating Point in Depth 209

FLT_TRUE_MIN
DBL_TRUE_MIN
LDBL_TRUE_MIN

Defines the minimum positive values (including subnormal val-
ues) that can be represented with the type.

FLT_MAX
DBL_MAX
LDBL_MAX Defines the largest values that can be represented with the type.

FLT_DECIMAL_DIG
DBL_DECIMAL_DIG
LDBL_DECIMAL_DIG

Defines the number of decimal digits n such that any floating-
point number that can be represented in the type can be rounded
to a floating-point number with n decimal digits, and back again,
without losing any precision of the value.

28.3 Special Floating-Point Values
IEEE floating point provides for special values that are not ordinary num-
bers.

infinities +Infinity and -Infinity are two different infinite values,
one positive and one negative. These result from operations
such as 1 / 0, Infinity + Infinity, Infinity * Infinity,
and Infinity + finite, and also from a result that is finite,
but larger than the most positive possible value or smaller than
the most negative possible value.

See Section 28.13 [Handling Infinity], page 218, for more about
working with infinities.

NaNs (not a number)
There are two special values, called Not-a-Number (NaN): a
quiet NaN (QNaN), and a signaling NaN (SNaN).

A QNaN is produced by operations for which the value is un-
defined in real arithmetic, such as 0 / 0, sqrt (-1), Infinity
- Infinity, and any basic operation in which an operand is a
QNaN.

The signaling NaN is intended for initializing otherwise-
unassigned storage, and the goal is that unlike a QNaN, an
SNaN does cause an interrupt that can be caught by a software
handler, diagnosed, and reported. In practice, little use has
been made of signaling NaNs, because the most common
CPUs in desktop and portable computers fail to implement
the full IEEE 754 Standard, and supply only one kind of
NaN, the quiet one. Also, programming-language standards

Chapter 28: Floating Point in Depth 210

have taken decades to catch up to the IEEE 754 standard,
and implementations of those language standards make an
additional delay before programmers become willing to use
these features.

To enable support for signaling NaNs, use the GCC command-
line option -fsignaling-nans, but this is an experimental fea-
ture and may not work as expected in every situation.

A NaN has a sign bit, but its value means nothing.

See Section 28.14 [Handling NaN], page 218, for more about
working with NaNs.

subnormal numbers
It can happen that a computed floating-point value is too small
to represent, such as when two tiny numbers are multiplied.
The result is then said to underflow. The traditional behavior
before the IEEE 754 Standard was to use zero as the result, and
possibly to report the underflow in some sort of program output.

The IEEE 754 Standard is vague about whether rounding hap-
pens before detection of floating underflow and overflow, or after,
and CPU designers may choose either.

However, the Standard does something unusual compared to
earlier designs, and that is that when the result is smaller than
the smallest normalized representable value (i.e., one in which
the leading significand bit is 1), the normalization requirement
is relaxed, leading zero bits are permitted, and precision is grad-
ually lost until there are no more bits in the significand. That
phenomenon is called gradual underflow, and it serves important
numerical purposes, although it does reduce the precision of the
final result. Some floating-point designs allow you to choose at
compile time, or even at run time, whether underflows are grad-
ual, or are flushed abruptly to zero. Numbers that have entered
the region of gradual underflow are called subnormal.

You can use the library functions fesetround and fegetround
to set and get the rounding mode. Rounding modes are de-
fined (if supported by the platform) in fenv.h as: FE_UPWARD
to round toward positive infinity; FE_DOWNWARD to round toward
negative infinity; FE_TOWARDZERO to round toward zero; and FE_
TONEAREST to round to the nearest representable value, the de-
fault mode. It is best to use FE_TONEAREST except when there
is a special need for some other mode.

28.4 Invalid Optimizations
Signed zeros, Infinity, and NaN invalidate some optimizations by program-
mers and compilers that might otherwise have seemed obvious:

Chapter 28: Floating Point in Depth 211

• x + 0 and x - 0 are not the same as x when x is zero, because the result
depends on the rounding rule. See Section 28.7 [Rounding], page 212,
for more about rounding rules.

• x * 0.0 is not the same as 0.0 when x is Infinity, a NaN, or negative
zero.

• x / x is not the same as 1.0 when x is Infinity, a NaN, or zero.

• (x - y) is not the same as -(y - x) because when the operands are
finite and equal, one evaluates to +0 and the other to -0.

• x - x is not the same as 0.0 when x is Infinity or a NaN.

• x == x and x != x are not equivalent to 1 and 0 when x is a NaN.

• x < y and isless (x, y) are not equivalent, because the first sets a
sticky exception flag (see Section 28.5 [Exception Flags], page 211) when
an operand is a NaN, whereas the second does not affect that flag.
The same holds for the other isxxx functions that are companions to
relational operators. See Section “FP Comparison Functions” in The
GNU C Library Reference Manual.

The -funsafe-math-optimizations option enables these optimizations.

28.5 Floating Arithmetic Exception Flags
Sticky exception flags record the occurrence of particular conditions: once
set, they remain set until the program explicitly clears them.

The conditions include invalid operand, division-by zero, inexact result
(i.e., one that required rounding), underflow, and overflow. Some extended
floating-point designs offer several additional exception flags. The func-
tions feclearexcept, feraiseexcept, fetestexcept, fegetexceptflags,
and fesetexceptflags provide a standardized interface to those flags. See
Section “Status bit operations” in The GNU C Library Reference Manual.

One important use of those flags is to do a computation that is normally
expected to be exact in floating-point arithmetic, but occasionally might
not be, in which case, corrective action is needed. You can clear the inexact
result flag with a call to feclearexcept (FE_INEXACT), do the computation,
and then test the flag with fetestexcept (FE_INEXACT); the result of that
call is 0 if the flag is not set (there was no rounding), and 1 when there was
rounding (which, we presume, implies the program has to correct for that).

28.6 Exact Floating-Point Arithmetic
As long as the numbers are exactly representable (fractions whose denom-
inator is a power of 2), and intermediate results do not require rounding,
then floating-point arithmetic is exact. It is easy to predict how many digits
are needed for the results of arithmetic operations:

Chapter 28: Floating Point in Depth 212

• addition and subtraction of two n-digit values with the same exponent
require at most n + 1 digits, but when the exponents differ, many more
digits may be needed;

• multiplication of two n-digit values requires exactly 2 n digits;

• although integer division produces a quotient and a remainder of no
more than n-digits, floating-point remainder and square root may re-
quire an unbounded number of digits, and the quotient can need many
more digits than can be stored.

Whenever a result requires more than n digits, rounding is needed.

28.7 Rounding
When floating-point arithmetic produces a result that can’t fit exactly in
the significand of the type that’s in use, it has to round the value. The
basic arithmetic operations—addition, subtraction, multiplication, division,
and square root—always produce a result that is equivalent to the exact,
possibly infinite-precision result rounded to storage precision according to
the current rounding rule.

Rounding sets the FE_INEXACT exception flag (see Section 28.5 [Exception
Flags], page 211). This enables programs to determine that rounding has
occurred.

Rounding consists of adjusting the exponent to bring the significand back
to the required base-point alignment, then applying the current rounding
rule to squeeze the significand into the fixed available size.

The current rule is selected at run time from four options. Here they are:

* round-to-nearest, with ties rounded to an even integer;

* round-up, towards +Infinity;

* round-down, towards -Infinity;

* round-towards-zero.

Under those four rounding rules, a decimal value -1.2345 that is to be
rounded to a four-digit result would become -1.234, -1.234, -1.235, and
-1.234, respectively.

The default rounding rule is round-to-nearest, because that has the least
bias, and produces the lowest average error. When the true result lies exactly
halfway between two representable machine numbers, the result is rounded
to the one that ends with an even digit.

The round-towards-zero rule was common on many early computer de-
signs, because it is the easiest to implement: it just requires silent truncation
of all extra bits.

The two other rules, round-up and round-down, are essential for imple-
menting interval arithmetic, whereby each arithmetic operation produces
lower and upper bounds that are guaranteed to enclose the exact result.

Chapter 28: Floating Point in Depth 213

See Section 28.17 [Rounding Control], page 220, for details on getting
and setting the current rounding mode.

28.8 Rounding Issues
The default IEEE 754 rounding mode minimizes errors, and most normal
computations should not suffer any serious accumulation of errors from
rounding.

Of course, you can contrive examples where that is not so. Here is one:
iterate a square root, then attempt to recover the original value by repeated
squaring.

#include <stdio.h>
#include <math.h>

int main (void)
{

double x = 100.0;
double y;
for (n = 10; n <= 100; n += 10)
{
y = x;
for (k = 0; k < n; ++k) y = sqrt (y);
for (k = 0; k < n; ++k) y *= y;
printf ("n = %3d; x = %.0f\ty = %.6f\n", n, x, y);

}
return 0;

}

Here is the output:

n = 10; x = 100 y = 100.000000
n = 20; x = 100 y = 100.000000
n = 30; x = 100 y = 99.999977
n = 40; x = 100 y = 99.981025
n = 50; x = 100 y = 90.017127
n = 60; x = 100 y = 1.000000
n = 70; x = 100 y = 1.000000
n = 80; x = 100 y = 1.000000
n = 90; x = 100 y = 1.000000
n = 100; x = 100 y = 1.000000

After 50 iterations, y has barely one correct digit, and soon after, there
are no correct digits.

28.9 Significance Loss
A much more serious source of error in floating-point computation is sig-
nificance loss from subtraction of nearly equal values. This means that the

Chapter 28: Floating Point in Depth 214

number of bits in the significand of the result is fewer than the size of the
value would permit. If the values being subtracted are close enough, but
still not equal, a single subtraction can wipe out all correct digits, possibly
contaminating all future computations.

Floating-point calculations can sometimes be carefully designed so that
significance loss is not possible, such as summing a series where all terms have
the same sign. For example, the Taylor series expansions of the trigonometric
and hyperbolic sines have terms of identical magnitude, of the general form
x**(2*n + 1) / (2*n + 1)!. However, those in the trigonometric sine series
alternate in sign, while those in the hyperbolic sine series are all positive.
Here is the output of two small programs that sum k terms of the series
for sin (x), and compare the computed sums with known-to-be-accurate
library functions:

x = 10 k = 51
s (x) = -0.544_021_110_889_270
sin (x) = -0.544_021_110_889_370

x = 20 k = 81
s (x) = 0.912_945_250_749_573
sin (x) = 0.912_945_250_727_628

x = 30 k = 109
s (x) = -0.987_813_746_058_855
sin (x) = -0.988_031_624_092_862

x = 40 k = 137
s (x) = 0.617_400_430_980_474
sin (x) = 0.745_113_160_479_349

x = 50 k = 159
s (x) = 57_105.187_673_745_720_532
sin (x) = -0.262_374_853_703_929

// sinh(x) series summation with positive signs
// with k terms needed to converge to machine precision

x = 10 k = 47
t (x) = 1.101_323_287_470_340e+04
sinh (x) = 1.101_323_287_470_339e+04

x = 20 k = 69
t (x) = 2.425_825_977_048_951e+08
sinh (x) = 2.425_825_977_048_951e+08

x = 30 k = 87

Chapter 28: Floating Point in Depth 215

t (x) = 5.343_237_290_762_229e+12
sinh (x) = 5.343_237_290_762_231e+12

x = 40 k = 105
t (x) = 1.176_926_334_185_100e+17
sinh (x) = 1.176_926_334_185_100e+17

x = 50 k = 121
t (x) = 2.592_352_764_293_534e+21
sinh (x) = 2.592_352_764_293_536e+21

We have added underscores to the numbers to enhance readability.

The sinh (x) series with positive terms can be summed to high accuracy.
By contrast, the series for sin (x) suffers increasing significance loss, so that
when x = 30 only two correct digits remain. Soon after, all digits are wrong,
and the answers are complete nonsense.

An important skill in numerical programming is to recognize when signif-
icance loss is likely to contaminate a computation, and revise the algorithm
to reduce this problem. Sometimes, the only practical way to do so is to
compute in higher intermediate precision, which is why the extended types
like long double are important.

28.10 Fused Multiply-Add
In 1990, when IBM introduced the POWER architecture, the CPU provided
a previously unknown instruction, the fused multiply-add (FMA). It com-
putes the value x * y + z with an exact double-length product, followed by
an addition with a single rounding. Numerical computation often needs
pairs of multiply and add operations, for which the FMA is well-suited.

On the POWER architecture, there are two dedicated registers that hold
permanent values of 0.0 and 1.0, and the normal multiply and add instruc-
tions are just wrappers around the FMA that compute x * y + 0.0 and x *
1.0 + z, respectively.

In the early days, it appeared that the main benefit of the FMA was
getting two floating-point operations for the price of one, almost doubling
the performance of some algorithms. However, numerical analysts have since
shown numerous uses of the FMA for significantly enhancing accuracy. We
discuss one of the most important ones in the next section.

A few other architectures have since included the FMA, and most provide
variants for the related operations x * y - z (FMS), -x * y + z (FNMA), and
-x * y - z (FNMS).

The functions fmaf, fma, and fmal implement fused multiply-add for the
float, double, and long double data types. Correct implementation of the
FMA in software is difficult, and some systems that appear to provide those
functions do not satisfy the single-rounding requirement. That situation

Chapter 28: Floating Point in Depth 216

should change as more programmers use the FMA operation, and more CPUs
provide FMA in hardware.

Use the -ffp-contract=fast option to allow generation of FMA instruc-
tions, or -ffp-contract=off to disallow it.

28.11 Error Recovery
When two numbers are combined by one of the four basic operations, the re-
sult often requires rounding to storage precision. For accurate computation,
one would like to be able to recover that rounding error. With historical
floating-point designs, it was difficult to do so portably, but now that IEEE
754 arithmetic is almost universal, the job is much easier.

For addition with the default round-to-nearest rounding mode, we can
determine the error in a sum like this:

volatile double err, sum, tmp, x, y;

if (fabs (x) >= fabs (y))
{
sum = x + y;
tmp = sum - x;
err = y - tmp;

}
else /* fabs (x) < fabs (y) */

{
sum = x + y;
tmp = sum - y;
err = x - tmp;

}

Now, x + y is exactly represented by sum + err. This basic operation, which
has come to be called twosum in the numerical-analysis literature, is the first
key to tracking, and accounting for, rounding error.

To determine the error in subtraction, just swap the + and - operators.

We used the volatile qualifier (see Section 21.2 [volatile], page 137)
in the declaration of the variables, which forces the compiler to store and
retrieve them from memory, and prevents the compiler from optimizing err
= y - ((x + y) - x) into err = 0.

For multiplication, we can compute the rounding error without magni-
tude tests with the FMA operation (see Section 28.10 [Fused Multiply-Add],
page 215), like this:

volatile double err, prod, x, y;
prod = x * y; /* rounded product */
err = fma (x, y, -prod); /* exact product = prod + err */

For addition, subtraction, and multiplication, we can represent the exact
result with the notional sum of two values. However, the exact result of

Chapter 28: Floating Point in Depth 217

division, remainder, or square root potentially requires an infinite number of
digits, so we can at best approximate it. Nevertheless, we can compute an
error term that is close to the true error: it is just that error value, rounded
to machine precision.

For division, you can approximate x / y with quo + err like this:

volatile double err, quo, x, y;
quo = x / y;
err = fma (-quo, y, x) / y;

For square root, we can approximate sqrt (x) with root + err like this:

volatile double err, root, x;
root = sqrt (x);
err = fma (-root, root, x) / (root + root);

With the reliable and predictable floating-point design provided by IEEE
754 arithmetic, we now have the tools we need to track errors in the five
basic floating-point operations, and we can effectively simulate computing
in twice working precision, which is sometimes sufficient to remove almost
all traces of arithmetic errors.

28.12 Exact Floating-Point Constants
One of the frustrations that numerical programmers have suffered with since
the dawn of digital computers is the inability to precisely specify numbers
in their programs. On the early decimal machines, that was not an issue:
you could write a constant 1e-30 and be confident of that exact value being
used in floating-point operations. However, when the hardware works in a
base other than 10, then human-specified numbers have to be converted to
that base, and then converted back again at output time. The two base
conversions are rarely exact, and unwanted rounding errors are introduced.

As computers usually represent numbers in a base other than 10, numbers
often must be converted to and from different bases, and rounding errors
can occur during conversion. This problem is solved in C using hexademical
floating-point constants. For example, +0x1.fffffcp-1 is the number that
is the IEEE 754 32-bit value closest to, but below, 1.0. The significand is
represented as a hexadecimal fraction, and the power of two is written in
decimal following the exponent letter p (the traditional exponent letter e is
not possible, because it is a hexadecimal digit).

In printf and scanf and related functions, you can use the ‘%a’ and ‘%A’
format specifiers for writing and reading hexadecimal floating-point values.
‘%a’ writes them with lower case letters and ‘%A’ writes them with upper case
letters. For instance, this code reproduces our sample number:

printf ("%a\n", 1.0 - pow (2.0, -23));
a 0x1.fffffcp-1

The strtod family was similarly extended to recognize numbers in that new
format.

Chapter 28: Floating Point in Depth 218

If you want to ensure exact data representation for transfer of floating-
point numbers between C programs on different computers, then hexadeci-
mal constants are an optimum choice.

28.13 Handling Infinity
As we noted earlier, the IEEE 754 model of computing is not to stop the
program when exceptional conditions occur. It takes note of exceptional
values or conditions by setting sticky exception flags, or by producing results
with the special values Infinity and QNaN. In this section, we discuss Infinity;
see Section 28.14 [Handling NaN], page 218, for the other.

In GNU C, you can create a value of negative Infinity in software like
this:

double x;

x = -1.0 / 0.0;

GNU C supplies the __builtin_inf, __builtin_inff, and __builtin_
infl macros, and the GNU C Library provides the INFINITY macro, all of
which are compile-time constants for positive infinity.

GNU C also provides a standard function to test for an Infinity: isinf
(x) returns 1 if the argument is a signed infinity, and 0 if not.

Infinities can be compared, and all Infinities of the same sign are equal:
there is no notion in IEEE 754 arithmetic of different kinds of Infinities, as
there are in some areas of mathematics. Positive Infinity is larger than any
finite value, and negative Infinity is smaller than finite value.

Infinities propagate in addition, subtraction, multiplication, and square
root, but in division, they disappear, because of the rule that finite /
Infinity is 0.0. Thus, an overflow in an intermediate computation that
produces an Infinity is likely to be noticed later in the final results. The
programmer can then decide whether the overflow is expected, and accept-
able, or whether the code possibly has a bug, or needs to be run in higher
precision, or redesigned to avoid the production of the Infinity.

28.14 Handling NaN
NaNs are not numbers: they represent values from computations that pro-
duce undefined results. They have a distinctive property that makes them
unlike any other floating-point value: they are unequal to everything, includ-
ing themselves! Thus, you can write a test for a NaN like this:

if (x != x)
printf ("x is a NaN\n");

This test works in GNU C, but some compilers might evaluate that test
expression as false without properly checking for the NaN value. A more
portable way to test for NaN is to use the isnan function declared in math.h:

if (isnan (x))

Chapter 28: Floating Point in Depth 219

printf ("x is a NaN\n");

See Section “Floating Point Classes” in The GNU C Library Reference Man-
ual.

One important use of NaNs is marking of missing data. For example,
in statistics, such data must be omitted from computations. Use of any
particular finite value for missing data would eventually collide with real
data, whereas such data could never be a NaN, so it is an ideal marker.
Functions that deal with collections of data that may have holes can be
written to test for, and ignore, NaN values.

It is easy to generate a NaN in computations: evaluating 0.0 / 0.0 is
the commonest way, but Infinity - Infinity, Infinity / Infinity, and
sqrt (-1.0) also work. Functions that receive out-of-bounds arguments can
choose to return a stored NaN value, such as with the NAN macro defined in
math.h, but that does not set the invalid operand exception flag, and that
can fool some programs.

Like Infinity, NaNs propagate in computations, but they are even stickier,
because they never disappear in division. Thus, once a NaN appears in a
chain of numerical operations, it is almost certain to pop out into the final
results. The programmer has to decide whether that is expected, or whether
there is a coding or algorithmic error that needs repair.

In general, when function gets a NaN argument, it usually returns a NaN.
However, there are some exceptions in the math-library functions that you
need to be aware of, because they violate the NaNs-always-propagate rule:

• pow (x, 0.0) always returns 1.0, even if x is 0.0, Infinity, or a NaN.

• pow (1, y) always returns 1, even if y is a NaN.

• hypot (INFINITY, y) and hypot (-INFINITY, y) both always return
INFINITY, even if y is a Nan.

• If just one of the arguments to fmax (x, y) or fmin (x, y) is a NaN, it
returns the other argument. If both arguments are NaNs, it returns a
NaN, but there is no requirement about where it comes from: it could
be x, or y, or some other quiet NaN.

NaNs are also used for the return values of math-library functions where
the result is not representable in real arithmetic, or is mathematically un-
defined or uncertain, such as sqrt (-1.0) and sin (Infinity). However,
note that a result that is merely too big to represent should always produce
an Infinity, such as with exp (1000.0) (too big) and exp (Infinity) (truly
infinite).

28.15 Signed Zeros
The sign of zero is significant, and important, because it records the creation
of a value that is too small to represent, but came from either the negative
axis, or from the positive axis. Such fine distinctions are essential for proper

Chapter 28: Floating Point in Depth 220

handling of branch cuts in complex arithmetic (see Section 28.19 [Complex
Arithmetic], page 223).

The key point about signed zeros is that in comparisons, their sign does
not matter: 0.0 == -0.0 must always evaluate to 1 (true). However, they
are not the same number, and -0.0 in C code stands for a negative zero.

28.16 Scaling by Powers of the Base
We have discussed rounding errors several times in this chapter, but it is
important to remember that when results require no more bits than the
exponent and significand bits can represent, those results are exact.

One particularly useful exact operation is scaling by a power of the base.
While one, in principle, could do that with code like this:

y = x * pow (2.0, (double)k); /* Undesirable scaling: avoid! */

that is not advisable, because it relies on the quality of the math-library
power function, and that happens to be one of the most difficult functions
in the C math library to make accurate. What is likely to happen on many
systems is that the returned value from pow will be close to a power of two,
but slightly different, so the subsequent multiplication introduces rounding
error.

The correct, and fastest, way to do the scaling is either via the traditional
C library function, or with its C99 equivalent:

y = ldexp (x, k); /* Traditional pre-C99 style. */
y = scalbn (x, k); /* C99 style. */

Both functions return x * 2**k. See Section “Normalization Functions” in
The GNU C Library Reference Manual.

28.17 Rounding Control
Here we describe how to specify the rounding mode at run time. System
header file fenv.h provides the prototypes for these functions. See Section
“Rounding” in The GNU C Library Reference Manual.

That header file also provides constant names for the four rounding modes:
FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, and FE_UPWARD.

The function fegetround examines and returns the current rounding
mode. On a platform with IEEE 754 floating point, the value will always
equal one of those four constants. On other platforms, it may return a
negative value. The function fesetround sets the current rounding mode.

Changing the rounding mode can be slow, so it is useful to minimize the
number of changes. For interval arithmetic, we seem to need three changes
for each operation, but we really only need two, because we can write code
like this example for interval addition of two reals:

{
struct interval_double

Chapter 28: Floating Point in Depth 221

{
double hi, lo;

} v;
volatile double x, y;
int rule;

rule = fegetround ();

if (fesetround (FE_UPWARD) == 0)
{
v.hi = x + y;
v.lo = -(-x - y);

}
else
fatal ("ERROR: failed to change rounding rule");

if (fesetround (rule) != 0)
fatal ("ERROR: failed to restore rounding rule");

}

The volatile qualifier (see Section 21.2 [volatile], page 137) is essential on
x86 platforms to prevent an optimizing compiler from producing the same
value for both bounds.

28.18 Machine Epsilon
In any floating-point system, three attributes are particularly important to
know: base (the number that the exponent specifies a power of), precision
(number of digits in the significand), and range (difference between most
positive and most negative values). The allocation of bits between exponent
and significand decides the answers to those questions.

A measure of the precision is the answer to the question: what is the
smallest number that can be added to 1.0 such that the sum differs from
1.0? That number is called the machine epsilon.

We could define the needed machine-epsilon constants for float, double,
and long double like this:

static const float epsf = 0x1p-23; /* about 1.192e-07 */
static const double eps = 0x1p-52; /* about 2.220e-16 */
static const long double epsl = 0x1p-63; /* about 1.084e-19 */

Instead of the hexadecimal constants, we could also have used the Standard
C macros, FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON.

It is useful to be able to compute the machine epsilons at run time, and
we can easily generalize the operation by replacing the constant 1.0 with a
user-supplied value:

double
macheps (double x)

Chapter 28: Floating Point in Depth 222

{ /* Return machine epsilon for x, */
such that x + macheps (x) > x. */

static const double base = 2.0;
double eps;

if (isnan (x))
eps = x;

else
{
eps = (x == 0.0) ? 1.0 : x;

while ((x + eps / base) != x)
eps /= base; /* Always exact! */

}

return (eps);
}

If we call that function with arguments from 0 to 10, as well as Infinity and
NaN, and print the returned values in hexadecimal, we get output like this:

macheps (0) = 0x1.0000000000000p-1074
macheps (1) = 0x1.0000000000000p-52
macheps (2) = 0x1.0000000000000p-51
macheps (3) = 0x1.8000000000000p-52
macheps (4) = 0x1.0000000000000p-50
macheps (5) = 0x1.4000000000000p-51
macheps (6) = 0x1.8000000000000p-51
macheps (7) = 0x1.c000000000000p-51
macheps (8) = 0x1.0000000000000p-49
macheps (9) = 0x1.2000000000000p-50
macheps (10) = 0x1.4000000000000p-50
macheps (Inf) = infinity
macheps (NaN) = nan

Notice that macheps has a special test for a NaN to prevent an infinite loop.

Our code made another test for a zero argument to avoid getting a
zero return. The returned value in that case is the smallest representable
floating-point number, here the subnormal value 2**(-1074), which is about
4.941e-324.

No special test is needed for an Infinity, because the eps-reduction loop
then terminates at the first iteration.

Our macheps function here assumes binary floating point; some architec-
tures may differ.

The C library includes some related functions that can also be used to
determine machine epsilons at run time:

#include <math.h> /* Include for these prototypes. */

Chapter 28: Floating Point in Depth 223

double nextafter (double x, double y);
float nextafterf (float x, float y);
long double nextafterl (long double x, long double y);

These return the machine number nearest x in the direction of y. For ex-
ample, nextafter (1.0, 2.0) produces the same result as 1.0 + macheps
(1.0) and 1.0 + DBL_EPSILON. See Section “FP Bit Twiddling” in The
GNU C Library Reference Manual.

It is important to know that the machine epsilon is not symmetric about
all numbers. At the boundaries where normalization changes the exponent,
the epsilon below x is smaller than that just above x by a factor 1 / base.
For example, macheps (1.0) returns +0x1p-52, whereas macheps (-1.0)
returns +0x1p-53. Some authors distinguish those cases by calling them the
positive and negative, or big and small, machine epsilons. You can produce
their values like this:

eps_neg = 1.0 - nextafter (1.0, -1.0);
eps_pos = nextafter (1.0, +2.0) - 1.0;

If x is a variable, such that you do not know its value at compile time,
then you can substitute literal y values with either -inf() or +inf(), like
this:

eps_neg = x - nextafter (x, -inf ());
eps_pos = nextafter (x, +inf() - x);

In such cases, if x is Infinity, then the nextafter functions return y if x
equals y . Our two assignments then produce +0x1.fffffffffffffp+1023
(about 1.798e+308) for eps neg and Infinity for eps pos. Thus, the call
nextafter (INFINITY, -INFINITY) can be used to find the largest repre-
sentable finite number, and with the call nextafter (0.0, 1.0), the small-
est representable number (here, 0x1p-1074 (about 4.491e-324), a number
that we saw before as the output from macheps (0.0)).

28.19 Complex Arithmetic
We’ve already looked at defining and referring to complex numbers (see
Section 11.3 [Complex Data Types], page 54). What is important to dis-
cuss here are some issues that are unlikely to be obvious to programmers
without extensive experience in both numerical computing, and in complex
arithmetic in mathematics.

The first important point is that, unlike real arithmetic, in complex arith-
metic, the danger of significance loss is pervasive, and affects every one of
the basic operations, and almost all of the math-library functions. To un-
derstand why, recall the rules for complex multiplication and division:

a = u + I*v /* First operand. */
b = x + I*y /* Second operand. */

prod = a * b

Chapter 28: Floating Point in Depth 224

= (u + I*v) * (x + I*y)
= (u * x - v * y) + I*(v * x + u * y)

quo = a / b
= (u + I*v) / (x + I*y)
= [(u + I*v) * (x - I*y)] / [(x + I*y) * (x - I*y)]
= [(u * x + v * y) + I*(v * x - u * y)] / (x**2 + y**2)

There are four critical observations about those formulas:

• the multiplications on the right-hand side introduce the possibility of
premature underflow or overflow;

• the products must be accurate to twice working precision;

• there is always one subtraction on the right-hand sides that is subject
to catastrophic significance loss; and

• complex multiplication has up to six rounding errors, and complex di-
vision has ten rounding errors.

Another point that needs careful study is the fact that many functions
in complex arithmetic have branch cuts. You can view a function with a
complex argument, f (z), as f (x + I*y), and thus, it defines a relation
between a point (x, y) on the complex plane with an elevation value on a
surface. A branch cut looks like a tear in that surface, so approaching the
cut from one side produces a particular value, and from the other side, a
quite different value. Great care is needed to handle branch cuts properly,
and even small numerical errors can push a result from one side to the
other, radically changing the returned value. As we reported earlier, correct
handling of the sign of zero is critically important for computing near branch
cuts.

The best advice that we can give to programmers who need complex
arithmetic is to always use the highest precision available, and then to care-
fully check the results of test calculations to gauge the likely accuracy of
the computed results. It is easy to supply test values of real and imaginary
parts where all five basic operations in complex arithmetic, and almost all of
the complex math functions, lose all significance, and fail to produce even a
single correct digit.

Even though complex arithmetic makes some programming tasks easier,
it may be numerically preferable to rework the algorithm so that it can be
carried out in real arithmetic. That is commonly possible in matrix algebra.

GNU C can perform code optimization on complex number multiplication
and division if certain boundary checks will not be needed. The command-
line option -fcx-limited-range tells the compiler that a range reduction
step is not needed when performing complex division, and that there is no
need to check if a complex multiplication or division results in the value Nan
+ I*NaN. By default these checks are enabled. You can explicitly enable
them with the -fno-cx-limited-range option.

Chapter 28: Floating Point in Depth 225

28.20 Round-Trip Base Conversion
Most numeric programs involve converting between base-2 floating-point
numbers, as represented by the computer, and base-10 floating-point num-
bers, as entered and handled by the programmer. What might not be obvious
is the number of base-2 bits vs. base-10 digits required for each represen-
tation. Consider the following tables showing the number of decimal digits
representable in a given number of bits, and vice versa:

binary in 24 53 64 113 237
decimal out 9 17 21 36 73

decimal in 7 16 34 70
binary out 25 55 114 234

We can compute the table numbers with these two functions:

int
matula(int nbits)
{ /* Return output decimal digits needed for nbits-bits input. */

return ((int)ceil((double)nbits / log2(10.0) + 1.0));
}

int
goldberg(int ndec)
{ /* Return output bits needed for ndec-digits input. */

return ((int)ceil((double)ndec / log10(2.0) + 1.0));
}

One significant observation from those numbers is that we cannot achieve
correct round-trip conversion between the decimal and binary formats in the
same storage size! For example, we need 25 bits to represent a 7-digit value
from the 32-bit decimal format, but the binary format only has 24 available.
Similar observations hold for each of the other conversion pairs.

The general input/output base-conversion problem is astonishingly com-
plicated, and solutions were not generally known until the publication of
two papers in 1990 that are listed later near the end of this chapter. For
the 128-bit formats, the worst case needs more than 11,500 decimal digits of
precision to guarantee correct rounding in a binary-to-decimal conversion!

For further details see the references for Bennett Goldberg and David
Matula.

28.21 Further Reading
The subject of floating-point arithmetic is much more complex than many
programmers seem to think, and few books on programming languages spend
much time in that area. In this chapter, we have tried to expose the reader
to some of the key ideas, and to warn of easily overlooked pitfalls that can
soon lead to nonsensical results. There are a few good references that we

Chapter 28: Floating Point in Depth 226

recommend for further reading, and for finding other important material
about computer arithmetic:

• Paul H. Abbott and 15 others, Architecture and software support in
IBM S/390 Parallel Enterprise Servers for IEEE Floating-Point arith-
metic, IBM Journal of Research and Development 43(5/6) 723–760
(1999), https://doi.org/10.1147/rd.435.0723. This article gives
a good description of IBM’s algorithm for exact decimal-to-binary con-
version, complementing earlier ones by Clinger and others.

• Nelson H. F. Beebe, The Mathematical-Function Computation
Handbook: Programming Using the MathCW Portable Software
Library, Springer (2017), ISBN 3-319-64109-3 (hardcover), 3-319-
64110-7 (e-book) (xxxvi + 1114 pages), https://doi.org/10.1007/
978-3-319-64110-2. This book describes portable implementations
of a large superset of the mathematical functions available in many
programming languages, extended to a future 256-bit format (70
decimal digits), for both binary and decimal floating point. It includes
a substantial portion of the functions described in the famous NIST
Handbook of Mathematical Functions, Cambridge (2018), ISBN
0-521-19225-0. See http://www.math.utah.edu/pub/mathcw for
compilers and libraries.

• William D. Clinger, How to Read Floating Point Numbers Accurately,
ACM SIGPLAN Notices 25(6) 92–101 (June 1990), https://doi.org/
10.1145/93548.93557. See also the papers by Steele & White.

• William D. Clinger, Retrospective: How to read floating point num-
bers accurately, ACM SIGPLAN Notices 39(4) 360–371 (April 2004),
http://doi.acm.org/10.1145/989393.989430. Reprint of 1990
paper, with additional commentary.

• I. Bennett Goldberg, 27 Bits Are Not Enough For 8-Digit Accuracy,
Communications of the ACM 10(2) 105–106 (February 1967), http://
doi.acm.org/10.1145/363067.363112. This paper, and its compan-
ions by David Matula, address the base-conversion problem, and show
that the naive formulas are wrong by one or two digits.

• David Goldberg, What Every Computer Scientist Should Know About
Floating-Point Arithmetic, ACM Computing Surveys 23(1) 5–58 (March
1991), corrigendum 23(3) 413 (September 1991), https://doi.org/
10.1145/103162.103163. This paper has been widely distributed, and
reissued in vendor programming-language documentation. It is well
worth reading, and then rereading from time to time.

• Norbert Juffa and Nelson H. F. Beebe, A Bibliography of Publications
on Floating-Point Arithmetic, http://www.math.utah.edu/pub/tex/
bib/fparith.bib. This is the largest known bibliography of publica-
tions about floating-point, and also integer, arithmetic. It is actively
maintained, and in mid 2019, contains more than 6400 references to
original research papers, reports, theses, books, and Web sites on the

https://doi.org/10.1147/rd.435.0723
https://doi.org/10.1007/978-3-319-64110-2
https://doi.org/10.1007/978-3-319-64110-2
http://www.math.utah.edu/pub/mathcw
https://doi.org/10.1145/93548.93557
https://doi.org/10.1145/93548.93557
http://doi.acm.org/10.1145/989393.989430
http://doi.acm.org/10.1145/363067.363112
http://doi.acm.org/10.1145/363067.363112
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://www.math.utah.edu/pub/tex/bib/fparith.bib
http://www.math.utah.edu/pub/tex/bib/fparith.bib

Chapter 28: Floating Point in Depth 227

subject matter. It can be used to locate the latest research in the field,
and the historical coverage dates back to a 1726 paper on signed-digit
arithmetic, and an 1837 paper by Charles Babbage, the intellectual fa-
ther of mechanical computers. The entries for the Abbott, Clinger, and
Steele & White papers cited earlier contain pointers to several other
important related papers on the base-conversion problem.

• William Kahan, Branch Cuts for Complex Elementary Functions, or
Much Ado About Nothing’s Sign Bit, (1987), http://people.freebsd.
org/~das/kahan86branch.pdf. This Web document about the fine
points of complex arithmetic also appears in the volume edited by A.
Iserles and M. J. D. Powell, The State of the Art in Numerical Analysis:
Proceedings of the Joint IMA/SIAM Conference on the State of the
Art in Numerical Analysis held at the University of Birmingham, 14–18
April 1986, Oxford University Press (1987), ISBN 0-19-853614-3 (xiv
+ 719 pages). Its author is the famous chief architect of the IEEE
754 arithmetic system, and one of the world’s greatest experts in the
field of floating-point arithmetic. An entire generation of his students
at the University of California, Berkeley, have gone on to careers in
academic and industry, spreading the knowledge of how to do floating-
point arithmetic right.

• Donald E. Knuth, A Simple Program Whose Proof Isn’t, in Beauty is
our business: a birthday salute to Edsger W. Dijkstra, W. H. J. Feijen,
A. J. M. van Gasteren, D. Gries, and J. Misra (eds.), Springer (1990),
ISBN 1-4612-8792-8, https://doi.org/10.1007/978-1-4612-4476-9.
This book chapter supplies a correctness proof of the decimal to binary,
and binary to decimal, conversions in fixed-point arithmetic in the TeX
typesetting system. The proof evaded its author for a dozen years.

• David W. Matula, In-and-out conversions, Communications of the ACM
11(1) 57–50 (January 1968), https://doi.org/10.1145/362851.
362887.

• David W. Matula, The Base Conversion Theorem, Proceedings of the
American Mathematical Society 19(3) 716–723 (June 1968). See also
other papers here by this author, and by I. Bennett Goldberg.

• David W. Matula, A Formalization of Floating-Point Numeric Base
Conversion, IEEE Transactions on Computers C-19(8) 681–692 (Au-
gust 1970), https://doi.org/10.1109/T-C.1970.223017.

• Jean-Michel Muller and eight others, Handbook of Floating-Point Arith-
metic, Birkhäuser-Boston (2010), ISBN 0-8176-4704-X (xxiii + 572
pages), https://doi.org/10.1007/978-0-8176-4704-9. This is a
comprehensive treatise from a French team who are among the world’s
greatest experts in floating-point arithmetic, and among the most pro-
lific writers of research papers in that field. They have much to teach,
and their book deserves a place on the shelves of every serious numerical
programmer.

http://people.freebsd.org/~das/kahan86branch.pdf
http://people.freebsd.org/~das/kahan86branch.pdf
https://doi.org/10.1007/978-1-4612-4476-9
https://doi.org/10.1145/362851.362887
https://doi.org/10.1145/362851.362887
https://doi.org/10.1109/T-C.1970.223017
https://doi.org/10.1007/978-0-8176-4704-9

Chapter 28: Floating Point in Depth 228

• Jean-Michel Muller and eight others, Handbook of Floating-Point Arith-
metic, Second edition, Birkhäuser-Boston (2018), ISBN 3-319-76525-6
(xxv + 627 pages), https://doi.org/10.1007/978-3-319-76526-6.
This is a new edition of the preceding entry.

• Michael Overton, Numerical Computing with IEEE Floating Point
Arithmetic, Including One Theorem, One Rule of Thumb, and One
Hundred and One Exercises, SIAM (2001), ISBN 0-89871-482-6 (xiv +
104 pages), http://www.ec-securehost.com/SIAM/ot76.html. This
is a small volume that can be covered in a few hours.

• Guy L. Steele Jr. and Jon L. White, How to Print Floating-Point Num-
bers Accurately, ACM SIGPLAN Notices 25(6) 112–126 (June 1990),
https://doi.org/10.1145/93548.93559. See also the papers by
Clinger.

• Guy L. Steele Jr. and Jon L. White, Retrospective: How to Print
Floating-Point Numbers Accurately, ACM SIGPLAN Notices 39(4)
372–389 (April 2004), http://doi.acm.org/10.1145/989393.989431.
Reprint of 1990 paper, with additional commentary.

• Pat H. Sterbenz, Floating Point Computation, Prentice-Hall (1974),
ISBN 0-13-322495-3 (xiv + 316 pages). This often-cited book provides
solid coverage of what floating-point arithmetic was like before the in-
troduction of IEEE 754 arithmetic.

https://doi.org/10.1007/978-3-319-76526-6
http://www.ec-securehost.com/SIAM/ot76.html
https://doi.org/10.1145/93548.93559
http://doi.acm.org/10.1145/989393.989431

229

29 Compilation

Early in the manual we explained how to compile a simple C program that
consists of a single source file (see Section 2.4 [Compile Example], page 12).
However, we handle only short programs that way. A typical C program
consists of many source files, each of which is a separate compilation mod-
ule—meaning that it has to be compiled separately.

The full details of how to compile with GCC are documented in xxxx.
Here we give only a simple introduction.

These are the commands to compile two compilation modules, foo.c and
bar.c, with a command for each module:

gcc -c -O -g foo.c
gcc -c -O -g bar.c

In these commands, -g says to generate debugging information, -O says to
do some optimization, and -c says to put the compiled code for that module
into a corresponding object file and go no further. The object file for foo.c
is called foo.o, and so on.

If you wish, you can specify the additional options -Wformat
-Wparenthesis -Wstrict-prototypes, which request additional warnings.

One reason to divide a large program into multiple compilation modules
is to control how each module can access the internals of the others. When
a module declares a function or variable extern, other modules can access
it. The other functions and variables in a module can’t be accessed from
outside that module.

The other reason for using multiple modules is so that changing one source
file does not require recompiling all of them in order to try the modified
program. Dividing a large program into many substantial modules in this
way typically makes recompilation much faster.

After you compile all the program’s modules, in order to run the program
you must link the object files into a combined executable, like this:

gcc -o foo foo.o bar.o

In this command, -o foo species the file name for the executable file, and the
other arguments are the object files to link. Always specify the executable
file name in a command that generates one.

Normally we don’t run any of these commands directly. Instead we write
a set of make rules for the program, then use the make program to recompile
only the source files that need to be recompiled.

230

30 Directing Compilation

This chapter describes C constructs that don’t alter the program’s meaning
as such, but rather direct the compiler how to treat some aspects of the
program.

30.1 Pragmas
A pragma is an annotation in a program that gives direction to the compiler.

30.1.1 Pragma Basics

C defines two syntactical forms for pragmas, the line form and the token
form. You can write any pragma in either form, with the same meaning.

The line form is a line in the source code, like this:

#pragma line

The line pragma has no effect on the parsing of the lines around it. This
form has the drawback that it can’t be generated by a macro expansion.

The token form is a series of tokens; it can appear anywhere in the pro-
gram between the other tokens.

_Pragma (stringconstant)

The pragma has no effect on the syntax of the tokens that surround it; thus,
here’s a pragma in the middle of an if statement:

if _Pragma ("hello") (x > 1)

However, that’s an unclear thing to do; for the sake of understandability, it
is better to put a pragma on a line by itself and not embedded in the middle
of another construct.

Both forms of pragma have a textual argument. In a line pragma, the
text is the rest of the line. The textual argument to _Pragma uses the same
syntax as a C string constant: surround the text with two ‘"’ characters,
and add a backslash before each ‘"’ or ‘\’ character in it.

With either syntax, the textual argument specifies what to do. It begins
with one or several words that specify the operation. If the compiler does
not recognize them, it ignores the pragma.

Here are the pragma operations supported in GNU C.

#pragma GCC dependency "file" [message]
_Pragma ("GCC dependency \"file\" [message]")

Declares that the current source file depends on file, so GNU C
compares the file times and gives a warning if file is newer than
the current source file.

This directive searches for file the way #include searches for a
non-system header file.

If message is given, the warning message includes that text.

Chapter 30: Directing Compilation 231

Examples:

#pragma GCC dependency "parse.y"
_pragma ("GCC dependency \"/usr/include/time.h\" \
rerun fixincludes")

#pragma GCC poison identifiers
_Pragma ("GCC poison identifiers")

Poisons the identifiers listed in identifiers.

This is useful to make sure all mention of identifiers has been
deleted from the program and that no reference to them creeps
back in. If any of those identifiers appears anywhere in the
source after the directive, it causes a compilation error. For
example,

#pragma GCC poison printf sprintf fprintf
sprintf(some_string, "hello");

generates an error.

If a poisoned identifier appears as part of the expansion of a
macro that was defined before the identifier was poisoned, it
will not cause an error. Thus, system headers that define macros
that use the identifier will not cause errors.

For example,

#define strrchr rindex
_Pragma ("GCC poison rindex")
strrchr(some_string, ’h’);

does not cause a compilation error.

#pragma GCC system_header
_Pragma ("GCC system_header")

Specify treating the rest of the current source file as if it came
from a system header file. See Section “System Headers” in
Using the GNU Compiler Collection.

#pragma GCC warning message
_Pragma ("GCC warning message")

Equivalent to #warning. Its advantage is that the _Pragma form
can be included in a macro definition.

#pragma GCC error message
_Pragma ("GCC error message")

Equivalent to #error. Its advantage is that the _Pragma form
can be included in a macro definition.

#pragma GCC message message
_Pragma ("GCC message message")

Similar to ‘GCC warning’ and ‘GCC error’, this simply prints an
informational message, and could be used to include additional
warning or error text without triggering more warnings or errors.

Chapter 30: Directing Compilation 232

(Note that unlike ‘warning’ and ‘error’, ‘message’ does not
include ‘GCC’ as part of the pragma.)

30.1.2 Severity Pragmas

These pragmas control the severity of classes of diagnostics. You can specify
the class of diagnostic with the GCC option that causes those diagnostics to
be generated.

#pragma GCC diagnostic error option
_Pragma ("GCC diagnostic error option")

For code following this pragma, treat diagnostics of the variety
specified by option as errors. For example:

_Pragma ("GCC diagnostic error -Wformat")

specifies to treat diagnostics enabled by the -Wformat option as
errors rather than warnings.

#pragma GCC diagnostic warning option
_Pragma ("GCC diagnostic warning option")

For code following this pragma, treat diagnostics of the vari-
ety specified by option as warnings. This overrides the -Werror
option which says to treat warnings as errors.

#pragma GCC diagnostic ignore option
_Pragma ("GCC diagnostic ignore option")

For code following this pragma, refrain from reporting any di-
agnostics of the variety specified by option.

#pragma GCC diagnostic push
_Pragma ("GCC diagnostic push")
#pragma GCC diagnostic pop
_Pragma ("GCC diagnostic pop")

These pragmas maintain a stack of states for severity settings.
‘GCC diagnostic push’ saves the current settings on the stack,
and ‘GCC diagnostic pop’ pops the last stack item and restores
the current settings from that.

‘GCC diagnostic pop’ when the severity setting stack is empty
restores the settings to what they were at the start of compila-
tion.

Here is an example:

_Pragma ("GCC diagnostic error -Wformat")

/* -Wformat messages treated as errors. */

_Pragma ("GCC diagnostic push")
_Pragma ("GCC diagnostic warning -Wformat")

/* -Wformat messages treated as warnings. */

Chapter 30: Directing Compilation 233

_Pragma ("GCC diagnostic push")
_Pragma ("GCC diagnostic ignored -Wformat")

/* -Wformat messages suppressed. */

_Pragma ("GCC diagnostic pop")

/* -Wformat messages treated as warnings again. */

_Pragma ("GCC diagnostic pop")

/* -Wformat messages treated as errors again. */

/* This is an excess ‘pop’ that matches no ‘push’. */
_Pragma ("GCC diagnostic pop")

/* -Wformat messages treated once again
as specified by the GCC command-line options. */

30.1.3 Optimization Pragmas

These pragmas enable a particular optimization for specific function defi-
nitions. The settings take effect at the end of a function definition, so the
clean place to use these pragmas is between function definitions.

#pragma GCC optimize optimization
_Pragma ("GCC optimize optimization")

These pragmas enable the optimization optimization for the fol-
lowing functions. For example,

_Pragma ("GCC optimize -fforward-propagate")

says to apply the ‘forward-propagate’ optimization to all fol-
lowing function definitions. Specifying optimizations for indi-
vidual functions, rather than for the entire program, is rare but
can be useful for getting around a bug in the compiler.

If optimization does not correspond to a defined opti-
mization option, the pragma is erroneous. To turn off an
optimization, use the corresponding ‘-fno-’ option, such as
‘-fno-forward-propagate’.

#pragma GCC target optimizations
_Pragma ("GCC target optimizations")

The pragma ‘GCC target’ is similar to ‘GCC optimize’ but is
used for platform-specific optimizations. Thus,

_Pragma ("GCC target popcnt")

Chapter 30: Directing Compilation 234

activates the optimization ‘popcnt’ for all following function def-
initions. This optimization is supported on a few common tar-
gets but not on others.

#pragma GCC push_options
_Pragma ("GCC push_options")

The ‘push_options’ pragma saves on a stack the current set-
tings specified with the ‘target’ and ‘optimize’ pragmas.

#pragma GCC pop_options
_Pragma ("GCC pop_options")

The ‘pop_options’ pragma pops saved settings from that stack.

Here’s an example of using this stack.

_Pragma ("GCC push_options")
_Pragma ("GCC optimize forward-propagate")

/* Functions to compile
with the forward-propagate optimization. */

_Pragma ("GCC pop_options")
/* Ends enablement of forward-propagate. */

#pragma GCC reset_options
_Pragma ("GCC reset_options")

Clears all pragma-defined ‘target’ and ‘optimize’ optimization
settings.

30.2 Static Assertions
You can add compiler-time tests for necessary conditions into your code
using _Static_assert. This can be useful, for example, to check that the
compilation target platform supports the type sizes that the code expects.
For example,

_Static_assert ((sizeof (long int) >= 8),
"long int needs to be at least 8 bytes");

reports a compile-time error if compiled on a system with long integers
smaller than 8 bytes, with ‘long int needs to be at least 8 bytes’ as the
error message.

Since calls _Static_assert are processed at compile time, the expression
must be computable at compile time and the error message must be a literal
string. The expression can refer to the sizes of variables, but can’t refer to
their values. For example, the following static assertion is invalid for two
reasons:

char *error_message
= "long int needs to be at least 8 bytes";

int size_of_long_int = sizeof (long int);

235

_Static_assert (size_of_long_int == 8, error_message);

The expression size_of_long_int == 8 isn’t computable at compile time,
and the error message isn’t a literal string.

You can, though, use preprocessor definition values with _Static_
assert:

#define LONG_INT_ERROR_MESSAGE "long int needs to be \
at least 8 bytes"

_Static_assert ((sizeof (long int) == 8),
LONG_INT_ERROR_MESSAGE);

Static assertions are permitted wherever a statement or declaration is
permitted, including at top level in the file, and also inside the definition of
a type.

union y
{

int i;
int *ptr;
_Static_assert (sizeof (int *) == sizeof (int),
"Pointer and int not same size");

};

236

Appendix A Type Alignment

Code for device drivers and other communication with low-level hardware
sometimes needs to be concerned with the alignment of data objects in mem-
ory.

Each data type has a required alignment, always a power of 2, that says
at which memory addresses an object of that type can validly start. A valid
address for the type must be a multiple of its alignment. If a type’s alignment
is 1, that means it can validly start at any address. If a type’s alignment is
2, that means it can only start at an even address. If a type’s alignment is
4, that means it can only start at an address that is a multiple of 4.

The alignment of a type (except char) can vary depending on the kind
of computer in use. To refer to the alignment of a type in a C program, use
_Alignof, whose syntax parallels that of sizeof. Like sizeof, _Alignof is
a compile-time operation, and it doesn’t compute the value of the expression
used as its argument.

Nominally, each integer and floating-point type has an alignment equal
to the largest power of 2 that divides its size. Thus, int with size 4 has
a nominal alignment of 4, and long long int with size 8 has a nominal
alignment of 8.

However, each kind of computer generally has a maximum alignment,
and no type needs more alignment than that. If the computer’s maximum
alignment is 4 (which is common), then no type’s alignment is more than 4.

The size of any type is always a multiple of its alignment; that way, in an
array whose elements have that type, all the elements are properly aligned
if the first one is.

These rules apply to all real computers today, but some embedded con-
trollers have odd exceptions. We don’t have references to cite for them.

Ordinary C code guarantees that every object of a given type is in fact
aligned as that type requires.

If the operand of _Alignof is a structure field, the value is the alignment
it requires. It may have a greater alignment by coincidence, due to the
other fields, but _Alignof is not concerned about that. See Chapter 15
[Structures], page 80.

Older versions of GNU C used the keyword __alignof__ for this, but
now that the feature has been standardized, it is better to use the standard
keyword _Alignof.

You can explicitly specify an alignment requirement for a particular vari-
able or structure field by adding _Alignas (alignment) to the declaration,
where alignment is a power of 2 or a type name. For instance:

char _Alignas (8) x;

or

char _Alignas (double) x;

Appendix A: Type Alignment 237

specifies that x must start on an address that is a multiple of 8. However, if
alignment exceeds the maximum alignment for the machine, that maximum
is how much alignment x will get.

The older GNU C syntax for this feature looked like __attribute__
((__aligned__ (alignment))) to the declaration, and was added after the
variable. For instance:

char x __attribute__ ((__aligned__ 8));

See Appendix D [Attributes], page 243.

238

Appendix B Aliasing

We have already presented examples of casting a void * pointer to another
pointer type, and casting another pointer type to void *.

One common kind of pointer cast is guaranteed safe: casting the value
returned by malloc and related functions (see Section 15.2 [Dynamic Mem-
ory Allocation], page 82). It is safe because these functions do not save
the pointer anywhere else; the only way the program will access the newly
allocated memory is via the pointer just returned.

In fact, C allows casting any pointer type to any other pointer type. Using
this to access the same place in memory using two different data types is
called aliasing.

Aliasing is necessary in some programs that do sophisticated memory
management, such as GNU Emacs, but most C programs don’t need to do
aliasing. When it isn’t needed, stay away from it! To do aliasing correctly
requires following the rules stated below. Otherwise, the aliasing may result
in malfunctions when the program runs.

The rest of this appendix explains the pitfalls and rules of aliasing.

B.1 Aliasing and Alignment
In order for a type-converted pointer to be valid, it must have the alignment
that the new pointer type requires. For instance, on most computers, int
has alignment 4; the address of an int must be a multiple of 4. However,
char has alignment 1, so the address of a char is usually not a multiple of 4.
Taking the address of such a char and casting it to int * probably results
in an invalid pointer. Trying to dereference it may cause a SIGBUS signal,
depending on the platform in use (see Appendix E [Signals], page 245).

foo ()
{

char i[4];
int *p = (int *) &i[1]; /* Misaligned pointer! */
return *p; /* Crash! */

}

This requirement is never a problem when casting the return value of
malloc because that function always returns a pointer with as much align-
ment as any type can require.

B.2 Aliasing and Length
When converting a pointer to a different pointer type, make sure the object
it really points to is at least as long as the target of the converted pointer.
For instance, suppose p has type int * and it’s cast as follows:

int *p;

Appendix B: Aliasing 239

struct
{
double d, e, f;

} foo;

struct foo *q = (struct foo *)p;

q->f = 5.14159;

the value q->f will run past the end of the int that p points to. If p was
initialized to the start of an array of type int[6], the object is long enough
for three doubles. But if p points to something shorter, q->f will run on
beyond the end of that, overlaying some other data. Storing that will garble
that other data. Or it could extend past the end of memory space and cause
a SIGSEGV signal (see Appendix E [Signals], page 245).

B.3 Type Rules for Aliasing
C code that converts a pointer to a different pointer type can use the point-
ers to access the same memory locations with two different data types. If
the same address is accessed with different types in a single control thread,
optimization can make the code do surprising things (in effect, make it mal-
function).

Here’s a concrete example where aliasing that can change the code’s be-
havior when it is optimized. We assume that float is 4 bytes long, like int,
and so is every pointer. Thus, the structures struct a and struct b are
both 8 bytes.

#include <stdio.h>
struct a { int size; char *data; };
struct b { float size; char *data; };

void sub (struct a *p, struct b *q)
{

int x;
p->size = 0;
q->size = 1;
x = p->size;
printf("x =%d\n", x);
printf("p->size =%d\n", (int)p->size);
printf("q->size =%d\n", (int)q->size);

}

int main(void)
{

struct a foo;
struct a *p = &foo;

Appendix B: Aliasing 240

struct b *q = (struct b *) &foo;

sub (p, q);
}

This code works as intended when compiled without optimization. All
the operations are carried out sequentially as written. The code sets x to
p->size, but what it actually gets is the bits of the floating point number
1, as type int.

However, when optimizing, the compiler is allowed to assume (mistakenly,
here) that q does not point to the same storage as p, because their data types
are not allowed to alias.

From this assumption, the compiler can deduce (falsely, here) that the
assignment into q->size has no effect on the value of p->size, which must
therefore still be 0. Thus, x will be set to 0.

GNU C, following the C standard, defines this optimization as legitimate.
Code that misbehaves when optimized following these rules is, by definition,
incorrect C code.

The rules for storage aliasing in C are based on the two data types: the
type of the object, and the type it is accessed through. The rules permit
accessing part of a storage object of type t using only these types:

• t.

• A type compatible with t. See Chapter 23 [Compatible Types],
page 164.

• A signed or unsigned version of one of the above.

• A qualifed version of one of the above. See Chapter 21 [Type Qualifiers],
page 136.

• An array, structure (see Chapter 15 [Structures], page 80), or union
type (Unions) that contains one of the above, either directly as a field
or through multiple levels of fields. If t is double, this would in-
clude struct s { union { double d[2]; int i[4]; } u; int i; }; be-
cause there’s a double inside it somewhere.

• A character type.

What do these rules say about the example in this subsection?

For foo.size (equivalently, a->size), t is int. The type float is not
allowed as an aliasing type by those rules, so b->size is not supposed to alias
with elements of j. Based on that assumption, GNU C makes a permitted
optimization that was not, in this case, consistent with what the programmer
intended the program to do.

Whether GCC actually performs type-based aliasing analysis depends on
the details of the code. GCC has other ways to determine (in some cases)
whether objects alias, and if it gets a reliable answer that way, it won’t fall
back on type-based heuristics.

241

The importance of knowing the type-based aliasing rules is not so as to
ensure that the optimization is done where it would be safe, but so as to
ensure it is not done in a way that would break the program. You can turn
off type-based aliasing analysis by giving GCC the option -fno-strict-
aliasing.

242

Appendix C Digraphs

C accepts aliases for certain characters. Apparently in the 1990s some com-
puter systems had trouble inputting these characters, or trouble displaying
them. These digraphs almost never appear in C programs nowadays, but we
mention them for completeness.

‘<:’ An alias for ‘[’.

‘:>’ An alias for ‘]’.

‘<%’ An alias for ‘{’.

‘%>’ An alias for ‘}’.

‘%:’ An alias for ‘#’, used for preprocessing directives (see
Section 26.2 [Directives], page 171) and macros (see
Section 26.5 [Macros], page 179).

243

Appendix D Attributes in Declarations

You can specify certain additional requirements in a declaration, to get fine-
grained control over code generation, and helpful informational messages
during compilation. We use a few attributes in code examples throughout
this manual, including

aligned The aligned attribute specifies a minimum alignment for a vari-
able or structure field, measured in bytes:

int foo __attribute__ ((aligned (8))) = 0;

This directs GNU C to allocate foo at an address that is a
multiple of 8 bytes. However, you can’t force an alignment bigger
than the computer’s maximum meaningful alignment.

packed The packed attribute specifies to compact the fields of a struc-
ture by not leaving gaps between fields. For example,

struct __attribute__ ((packed)) bar
{

char a;
int b;

};

allocates the integer field b at byte 1 in the structure, immedi-
ately after the character field a. The packed structure is just 5
bytes long (assuming int is 4 bytes) and its alignment is 1, that
of char.

deprecated
Applicable to both variables and functions, the deprecated at-
tribute tells the compiler to issue a warning if the variable or
function is ever used in the source file.

int old_foo __attribute__ ((deprecated));

int old_quux () __attribute__ ((deprecated));

__noinline__
The __noinline__ attribute, in a function’s declaration or defi-
nition, specifies never to inline calls to that function. All calls to
that function, in a compilation unit where it has this attribute,
will be compiled to invoke the separately compiled function. See
Section 22.7.4 [Inline Function Definitions], page 160.

__noclone__
The __noclone__ attribute, in a function’s declaration or defi-
nition, specifies never to clone that function. Thus, there will be
only one compiled version of the function. See Section 19.14.2
[Label Value Caveats], page 125, for more information about
cloning.

Appendix D: Attributes in Declarations 244

always_inline
The always_inline attribute, in a function’s declaration or def-
inition, specifies to inline all calls to that function (unless some-
thing about the function makes inlining impossible). This ap-
plies to all calls to that function in a compilation unit where it
has this attribute. See Section 22.7.4 [Inline Function Defini-
tions], page 160.

gnu_inline
The gnu_inline attribute, in a function’s declaration or defini-
tion, specifies to handle the inline keywprd the way GNU C
originally implemented it, many years before ISO C said any-
thing about inlining. See Section 22.7.4 [Inline Function Defini-
tions], page 160.

For full documentation of attributes, see the GCC manual. See Section
“System Headers” in Using the GNU Compiler Collection.

245

Appendix E Signals

Some program operations bring about an error condition called a signal.
These signals terminate the program, by default.

There are various different kinds of signals, each with a name. We have
seen several such error conditions through this manual:

SIGSEGV This signal is generated when a program tries to read or write
outside the memory that is allocated for it, or to write mem-
ory that can only be read. The name is an abbreviation for
“segmentation violation”.

SIGFPE This signal indicates a fatal arithmetic error. The name is an
abbreviation for “floating-point exception”, but covers all types
of arithmetic errors, including division by zero and overflow.

SIGBUS This signal is generated when an invalid pointer is dereferenced,
typically the result of dereferencing an uninintalized pointer.
It is similar to SIGSEGV, except that SIGSEGV indicates invalid
access to valid memory, while SIGBUS indicates an attempt to
access an invalid address.

These kinds of signal allow the program to specify a function as a signal
handler. When a signal has a handler, it doesn’t terminate the program;
instead it calls the handler.

There are many other kinds of signal; here we list only those that come
from run-time errors in C operations. The rest have to do with the function-
ing of the operating system. The GNU C Library Reference Manual gives
more explanation about signals (see Section “Program Signal Handling” in
The GNU C Library Reference Manual).

246

Appendix F GNU Free Documentation
License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or

http://fsf.org/

Appendix F: GNU Free Documentation License 247

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix F: GNU Free Documentation License 248

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

Appendix F: GNU Free Documentation License 249

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix F: GNU Free Documentation License 250

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not

Appendix F: GNU Free Documentation License 251

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

Appendix F: GNU Free Documentation License 252

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new

Appendix F: GNU Free Documentation License 253

versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix F: GNU Free Documentation License 254

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

255

Index of Symbols and Keywords

#
#define . 179
#elif . 202
#else . 202
#endif . 199
#error . 203
#if . 199
#ifdef . 199
#ifndef . 200
#include . 174
#line . 204
#undef . 191
#warning . 204

__aligned__ . 236
__alignof__ . 236
__attribute__ . 243
__auto_type . 131
__complex__ . 54
__label__ . 123
_Alignas . 236
_Alignof . 236
_Complex . 54
_Static_assert . 234

A
auto . 135

B
bool . 52
break . 112

C
case . 117
char . 50
CHAR_MAX . 207
const . 136
continue . 116

D
DBL_DECIMAL_DIG . 208
DBL_HAS_SUBNORM . 208
DBL_MAX . 208
DBL_MIN . 208
DBL_TRUE_MIN . 208
default . 117
do . 112
double . 53

E
else . 110
extern . 133

F
float . 53
FLT_DECIMAL_DIG . 208
FLT_HAS_SUBNORM . 208
FLT_MAX . 208
FLT_MIN . 208
FLT_TRUE_MIN . 208
for . 113

G
goto . 120

I
if . 109
inline . 160
int . 50
INT_MAX . 207

Index of Symbols and Keywords 256

L
LDBL_DECIMAL_DIG 208
LDBL_HAS_SUBNORM 208
LDBL_MAX . 208
LDBL_MIN . 208
LDBL_TRUE_MIN . 208
LLONG_MAX . 207
long double . 53
long int . 50
long long int . 50
LONG_MAX . 207

M
main . 151

R
register . 135
restrict . 138
return . 111

S
SCHAR_MAX . 207
short int . 50
SHRT_MAX . 207
signed . 51
sizeof . 66
static . 133, 143
struct . 80
switch . 117

T
typedef . 107
typeof . 131

U
UCHAR_MAX . 207
UINT_MAX . 207
ULLONG_MAX . 207
ULONG_MAX . 207
union . 89
unsigned . 51
USHRT_MAX . 207

V
void . 55
volatile . 137

W
while . 112

257

Concept Index

#
operator . 183
operator . 185

?
?: side effect . 42

‘_’ in variables in macros 196
__attribute__((packed)) 84
__complex__ keyword 54
_Complex keyword . 54
Complex I . 59

\
‘\a’ . 60
‘\b’ . 60
‘\e’ . 60
‘\f’ . 60
‘\n’ . 60
‘\r’ . 60
‘\t’ . 60
‘\v’ . 60

A
accessing array elements 97
addition operator . 24
address of a label . 124
address-of operator . 68
aliasing (of storage) 238
alignment of type . 236
allocating memory dynamically 82
allocation file-scope variables 134
argument promotions 166
arguments . 182
arguments in macro definitions 182
arithmetic operators 24
arithmetic, pointer . 73
array . 97
array as parameters 143
array elements, accessing 97
array example . 15
array fields, flexible . 87

array of length zero . 87

array of variable length 103

array parameters, variable-length 154

array types, incomplete 100

array values, constructing 103

array, declaring 98, 127

array, layout in memory 102

array, multidimensional 101

arrays and pointers . 75

assigning function pointers 151

assigning structures . 89

assignment expressions 33

assignment in subexpressions 37

assignment type conversions 165

assignment, modifying 34

assignment, simple . 33

associativity and ordering 46

attributes . 243

auto declarations . 135

B
backspace . 60

base conversion (floating point) 225

bell character . 60

binary integer constants 57

binary operator grammar 44

bit fields . 85

bitwise operators . 31

block . 110

block scope . 168

boolean type . 52

branch cuts . 224

branches of conditional expression 41

break statement . 112

bytes . 13

Concept Index 258

C
call-by-value . 149
calling function pointers 151
calling functions . 148
carriage return in source 19
case labels in initializers 130
case of letters in identifiers 21
case ranges . 120
cast . 165
cast to a union . 91
CHAR_BIT . 206
character constants . 60
character set . 18
cloning . 125
combining variable declarations 128
comma operator . 42
command-line parameters 153
commenting out code 203
comments . 19
common type . 167
comparison, pointer 72
comparisons . 29
compatible types . 164
compilation module 229
compiler options for integer overflow . . . 26
compiling . 12
complete example program 10
complex arithmetic in

floating-point calculations 223
complex conjugation 54
complex constants . 59
complex numbers . 54
compound statement 110
computed gotos . 124
computed includes . 178
concatenation . 185
conditional expression 41
conditional group . 199
conditionals . 198
conjunction operator 39
conjunction, bitwise 31
const fields . 86
const variables and fields 136
constant data types, integer 57
constants . 57
constants, character 60
constants, floating-point 58
constants, imaginary 59
constants, integer . 57
constants, string . 61
constants, wide character 63
constants, wide string 64

constructing array values 103
constructors, structure 92
continuation of lines 22
continue statement 116
controlling macro . 177
conversion between pointers

and integers . 79
conversions, type . 165
counting vowels and punctuation 118
crash . 6

D
declararing functions 147
declaration of variables 127
declarations inside expressions 125
declarations, combining 128
declarations, extern 133
declaring an array . 98
declaring arrays and pointers 127
declaring function pointers 150
decrement operator . 35
decrementing pointers 76
defined . 201
defining functions . 141
dereferencing pointers 69
designated initializers 130
diagnostic . 203
digraphs . 242
directive line . 171
directive name . 171
directives . 171
disjunction operator 39
disjunction, bitwise . 31
division by zero . 29
division operator . 24
do–while statement 112
downward funargs . 157
drawbacks of pointer arithmetic 78
Duff’s device . 119
dynamic memory allocation 82

Concept Index 259

E
elements of arrays . 97
empty macro arguments 183
enumeration types . 105
enumerator . 105
environment variables 153
equal operator . 29
error recovery (floating point) 216
escape (ASCII character) 60
escape sequence . 60
exact floating-point arithmetic 211
exact specification of

floating-point constants 217
example program, complete 10
exception flags (floating point) 211
executable file . 12
execution control expressions 39
exit status . 152
EXIT_FAILURE . 152
EXIT_SUCCESS . 152
expansion of arguments 197
explicit type conversion 165
expression statement 109
expression, conditional 41
expressions containing statements 125
expressions, execution control 39
extern declarations 133
extern inline function 161

F
failure . 152
Fibonacci function, iterative 6
Fibonacci function, recursive 3
field offset . 83
fields in structures . 80
file-scope variables . 132
file-scope variables, allocating 134
first-class object . 100
flexible array fields . 87
floating arithmetic exception flags 211
floating overflow . 211
floating point example 14
floating underflow 210, 211
floating-point arithmetic invalid

optimizations . 210
floating-point arithmetic with

complex numbers 223
floating-point arithmetic, exact 211
floating-point constants 58
floating-point constants, exact

specification of . 217

floating-point error recovery 216
floating-point fused multiply-add 215
floating-point infinity 218
floating-point machine epsilon 221
floating-point NaN 218
floating-point representations 208
floating-point round-trip

base conversion . 225
floating-point rounding control 220
floating-point rounding issues 213
floating-point scaling by

powers of the base 220
floating-point signed zeros 219
floating-point significance loss 213
floating-point types . 53
floating-point values, special 209
for statement . 113
formfeed . 60
formfeed in source . 19
forward declaration 143
forward function declarations 142
full expression . 47
function body . 4
function call semantics 149
function calls . 148
function declarations 147
function declarations, forward 142
function definitions 141
function definitions, inline 160
function definitions, old-style 162
function header . 4
function parameter lists,

variable length . 155
function parameter variables 141
function pointers . 149
function pointers, assigning 151
function pointers, calling 151
function pointers, declaring 150
function prototype 147
function prototype scope 168
function scope . 168
function-like macros 181
functions . 141
functions that accept

variable-length arrays 154
functions with array parameters 143
functions, nested . 157
functions, static . 143
fused multiply-add in

floating-point computations 215

Concept Index 260

G
global variables . 132
goto statement . 120
goto with computed label 124
grammar, binary operator 44
greater-or-equal operator 29
greater-than operator 29
guard macro . 177

H
handler (for signal) 245
header file . 174
hexademical floating-point constants . . 217

I
identifiers . 21, 172
IEEE 754-2008 Standard 208
if statement . 109
if. . .else statement 110
imaginary constants 59
including just once 177
incomplete array types 100
incomplete types . 93
increment operator . 35
incrementing pointers 76
infinity in floating-point arithmetic . . . 218
initializers . 129
initializers with labeled elements 130
inline function definitions 160
inline functions, omission of 161
integer arithmetic . 25
integer constant data types 57
integer constants . 57
integer overflow . 25
integer overflow, compiler options 26
integer ranges . 207
integer representations 206
integer types . 50
internal block . 110
intptr_t . 76
invalid optimizations in

floating-point arithmetic 210
iteration . 112
iterative Fibonacci function 6

K
K&R-style function definitions 162
keyword . 21

L
label . 120
labeled elements in initializers 130
labels as values . 124
layout of structures . 83
left-associative . 44
length-zero arrays . 87
less-or-equal operator 29
less-than operator . 29
lexical syntax . 18
limitations of C arrays 100
line continuation . 22
line control . 204
linefeed in source . 19
linking object files . 229
local labels . 123
local variables . 131
local variables in macros 195
logical operators . 39
loop statements . 112
low level pointer arithmetic 75
lvalues . 34

M
machine epsilon (floating point) 221
macro argument expansion 197
macro arguments and directives 192
macros . 179
macros in include . 178
macros with arguments 182
macros with variable arguments 186
macros, local labels 123
macros, local variables in 195
macros, types of arguments 131
main function . 151
make rules . 229
manifest constants . 179
maximum integer values 207
memory allocation, dynamic 82
memory organization 13
minimum integer values 207
modifying assignment 34
modulus . 28
multidimensional arrays 101
multiplication operator 24

Concept Index 261

N
NaN in floating-point arithmetic 218
NaNs-always-propagate rule 219
negation operator . 24
negation operator, logical 39
negation, bitwise . 31
nested block . 110
nested functions . 157
newline . 60
newline in source . 19
not a number . 218
not-equal operator . 29
null directive . 205
null pointers . 70
null statement . 120
numbers, preprocessing 172
numeric comparisons 29

O
object file . 229
object-like macro . 179
offset of structure fields 83
old-style function definitions 162
omitting types in declarations 135
operand execution ordering 46
operand ordering . 48
operand promotions 167
operator precedence 44
operator, addition . 24
operator, comma . 42
operator, decrement 35
operator, division . 24
operator, equal . 29
operator, greater-or-equal 29
operator, greater-than 29
operator, increment . 35
operator, less-or-equal 29
operator, less-than . 29
operator, multiplication 24
operator, negation . 24
operator, not-equal . 29
operator, postdecrement 36
operator, postincrement 36
operator, remainder 28
operator, subtraction 24
operators . 21
operators, arithmetic 24
operators, assignment 33
operators, bitwise . 31
operators, comparison 29
operators, logical . 39

operators, shift . 29
optimization and ordering 48
order of execution . 46
ordering and optimization 48
ordering and postincrement 47
ordering of operands 46, 48
overflow, compiler options 26
overflow, floating . 211
overflow, integer . 25
overlaying structures 88

P
packed structures . 84
parameter forward declaration 155
parameter list . 141
parameter variables in functions 141
parameters lists, variable length 155
parameters, command-line 153
parentheses in macro bodies 193
pitfalls of macros . 192
pointer arithmetic . 73
pointer arithmetic, drawbacks 78
pointer arithmetic, low level 75
pointer comparison . 72
pointer dereferencing 69
pointer increment and decrement 76
pointer type conversion 238
pointer-integer conversion 79
pointers . 68
pointers and arrays . 75
pointers to functions 149
pointers, declaring . 127
pointers, null . 70
pointers, restrict-qualified 138
pointers, void . 71
postdecrement expression 36
postincrement and ordering 47
postincrement expression 36
precedence, operator 44
predecrement expression 35
predefined macros . 188
preincrement expression 35
preprocessing . 171
preprocessing directives 171
preprocessing numbers 172
preprocessing tokens 172
prescan of macro arguments 197
primitive types . 50
printf . 11
problems with macros 192
promotion of arguments 166

Concept Index 262

prototype of a function 147
punctuation . 21

Q
QNaN . 209
quote directories . 177

R
ranges in case statements 120
ranges of integer types 207
recursion . 4
recursion, drawbacks of 5
recursive Fibonacci function 3
redefining macros . 191
referencing structure fields 81
register declarations 135
remainder operator . 28
reordering of operands 46
repeated inclusion . 177
reporting errors . 203
reporting warnings 203
representation of

floating-point numbers 208
representation of integers 206
reserved words . 21
restrict pointers . 138
return (ASCII character) 60
return statement . 111
returning values from main 152
round-trip base conversion 225
rounding . 212
rounding control (floating point) 220
rounding issues (floating point) 213

S
scaling floating point by

powers of the base 220
scope . 168
segmentation fault . 6
self-reference . 196
semantics of function calls 149
semicolons (after macro calls) 194
sequence points . 47
shift count . 29
shift operators . 29
side effect in ?: . 42
side effects (in macro arguments) 194
SIGBUS . 245
SIGFPE . 245

signal . 245
signed types . 51
signed zeros in

floating-point arithmetic 219
significance loss (floating point) 213
SIGSEGV . 245
simple assignment . 33
size of type . 66
SNaN . 209
space character in source 19
special floating-point values 209
stack . 5
stack frame . 5
stack overflow . 5
standard output . 11
statement, break . 112
statement, continue 116
statement, do–while 112
statement, expression 109
statement, for . 113
statement, goto . 120
statement, if . 109
statement, if. . .else 110
statement, null . 120
statement, return . 111
statement, switch . 117
statement, while . 112
statements . 109
statements inside expressions 125
statements, loop . 112
static assertions . 234
static function, declaration 143
static functions . 143
static local variables 133
sticky exception flags

(floating point) . 211
storage organization 13
string . 98
string constants . 61
stringification . 183
structure assignment 89
structure constructors 92
structure field offset 83
structure fields, constant 86
structure fields, referencing 81
structure layout . 83
structures . 80
structures, overlaying 88
structures, unnamed 92
subexpressions, assignment in 37
subnormal numbers 210
subtraction operator 24

Concept Index 263

success . 152
switch statement . 117
symbolic constants 179
system header files 174

T
tab (ASCII character) 60
tab character in source 19
tentative definition 134
thunks . 157
token . 18
token concatenation 185
token pasting . 185
truncation . 52
truth value . 29
two’s-complement representation 206
twosum . 216
type alignment . 236
type conversion, pointer 238
type conversions . 165
type designator . 55
type size . 66
type tags . 95
type, boolean . 52
type, void . 55
typedef names . 107
types of integer constants 57
types, compatible . 164
types, complex . 54
types, enumeration 105
types, floating-point 53
types, incomplete . 93
types, integer . 50
types, primitive . 50
types, signed . 51
types, unsigned . 51

U
uintptr_t . 79
undefining macros . 191
underflow, floating 210, 211
underscores in variables in macros 196
Unicode . 18
Unicode character codes 63
union, casting to a . 91
unions . 89
unions, unnamed . 92

universal character names 63
unnamed structures 92
unnamed unions . 92
unsafe macros . 194
unsigned types . 51
UTF-8 String Constants 62

V
va_copy . 156
va_end . 155
va_list . 155
va_start . 155
variable declarations 127
variable declarations, combining 128
variable number of arguments 186
variable-length array parameters 154
variable-length arrays 103
variable-length parameter lists 155
variables . 127
variables, const . 136
variables, file-scope 132
variables, global . 132
variables, local . 131
variables, local, in macros 195
variables, static local 133
variables, volatile 137
variadic function . 155
variadic macros . 186
vertical tab . 60
vertical tab in source 19
void pointers . 71
void type . 55
volatile variables and fields 137

W
while statement . 112
whitespace characters in source files 19
wide character constants 63
wide string constants 64
wrapper #ifndef . 177

Z
zero, division by . 29
zero-length arrays . 87
zero-origin indexing . 15

	Preface
	The First Example
	Example: Recursive Fibonacci
	Function Header
	Function Body

	The Stack, And Stack Overflow
	Example: Iterative Fibonacci

	A Complete Program
	Complete Program Example
	Complete Program Explanation
	Complete Program, Line by Line
	Compiling the Example Program

	Storage and Data
	Beyond Integers
	An Example with Non-Integer Numbers
	An Example with Arrays
	Calling the Array Example
	Variations for Array Example

	Lexical Syntax
	Write Programs in English!
	Characters
	Whitespace
	Comments
	Identifiers
	Operators and Punctuation
	Line Continuation

	Arithmetic
	Basic Arithmetic
	Integer Arithmetic
	Integer Overflow
	Overflow with Unsigned Integers
	Overflow with Signed Integers

	Mixed-Mode Arithmetic
	Division and Remainder
	Numeric Comparisons
	Shift Operations
	Shifting Makes New Bits
	Caveats for Shift Operations
	Shift Hacks

	Bitwise Operations

	Assignment Expressions
	Simple Assignment
	Lvalues
	Modifying Assignment
	Increment and Decrement Operators
	Postincrement and Postdecrement
	Pitfall: Assignment in Subexpressions
	Write Assignments in Separate Statements

	Execution Control Expressions
	Logical Operators
	Logical Operators and Comparisons
	Logical Operators and Assignments
	Conditional Expression
	Rules for Conditional Operator
	Conditional Operator Branches

	Comma Operator
	The Uses of the Comma Operator
	Clean Use of the Comma Operator
	When Not to Use the Comma Operator

	Binary Operator Grammar
	Order of Execution
	Reordering of Operands
	Associativity and Ordering
	Sequence Points
	Postincrement and Ordering
	Ordering of Operands
	Optimization and Ordering

	Primitive Data Types
	Integer Data Types
	Basic Integers
	Signed and Unsigned Types
	Narrow Integers
	Conversion among Integer Types
	Boolean Type
	Integer Variations

	Floating-Point Data Types
	Complex Data Types
	The Void Type
	Other Data Types
	Type Designators

	Constants
	Integer Constants
	Integer Constant Data Types
	Floating-Point Constants
	Imaginary Constants
	Invalid Numbers
	Character Constants
	String Constants
	UTF-8 String Constants
	Unicode Character Codes
	Wide Character Constants
	Wide String Constants

	Type Size
	Pointers
	Address of Data
	Pointer Types
	Pointer-Variable Declarations
	Pointer-Type Designators
	Dereferencing Pointers
	Null Pointers
	Dereferencing Null or Invalid Pointers
	Void Pointers
	Pointer Comparison
	Pointer Arithmetic
	Pointers and Arrays
	Pointer Arithmetic at Low Level
	Pointer Increment and Decrement
	Drawbacks of Pointer Arithmetic
	Pointer-Integer Conversion
	Printing Pointers

	Structures
	Referencing Structure Fields
	Dynamic Memory Allocation
	Field Offset
	Structure Layout
	Packed Structures
	Bit Fields
	Bit Field Packing
	const Fields
	Arrays of Length Zero
	Flexible Array Fields
	Overlaying Different Structures
	Structure Assignment
	Unions
	Packing With Unions
	Cast to a Union Type
	Structure Constructors
	Unnamed Types as Fields
	Incomplete Types
	Intertwined Incomplete Types
	Type Tags

	Arrays
	Accessing Array Elements
	Declaring an Array
	Strings
	Array Type Designators
	Incomplete Array Types
	Limitations of C Arrays
	Multidimensional Arrays
	Constructing Array Values
	Arrays of Variable Length

	Enumeration Types
	Defining Typedef Names
	Statements
	Expression Statement
	if Statement
	if-else Statement
	Blocks
	return Statement
	Loop Statements
	while Statement
	do-while Statement
	break Statement
	for Statement
	Example of for
	Omitted for-Expressions
	for-Index Declarations
	continue Statement

	switch Statement
	Example of switch
	Duff's Device
	Case Ranges
	Null Statement
	goto Statement and Labels
	Locally Declared Labels
	Labels as Values
	Label Value Uses
	Label Value Caveats

	Statements and Declarations in Expressions

	Variables
	Variable Declarations
	Declaring Arrays and Pointers
	Combining Variable Declarations

	Initializers
	Designated Initializers
	Referring to a Type with __auto_type
	Local Variables
	File-Scope Variables
	Static Local Variables
	extern Declarations
	Allocating File-Scope Variables
	auto and register
	Omitting Types in Declarations

	Type Qualifiers
	const Variables and Fields
	volatile Variables and Fields
	restrict-Qualified Pointers
	restrict Pointer Example

	Functions
	Function Definitions
	Function Parameter Variables
	Forward Function Declarations
	Static Functions
	Arrays as Parameters
	Array parameters are pointers
	Passing array arguments
	Type qualifiers on array parameters

	Functions That Accept Structure Arguments

	Function Declarations
	Function Calls
	Function Call Semantics
	Function Pointers
	Declaring Function Pointers
	Assigning Function Pointers
	Calling Function Pointers

	The main Function
	Returning Values from main
	Accessing Command-line Parameters
	Accessing Environment Variables

	Advanced Function Features
	Variable-Length Array Parameters
	Variable-Length Parameter Lists
	Nested Functions
	Inline Function Definitions

	Obsolete Function Features
	Older GNU C Inlining
	Old-Style Function Definitions

	Compatible Types
	Type Conversions
	Explicit Type Conversion
	Assignment Type Conversions
	Argument Promotions
	Operand Promotions
	Common Type

	Scope
	Preprocessing
	Preprocessing Overview
	Directives
	Preprocessing Tokens
	Header Files
	#include Syntax
	#include Operation
	Search Path
	Once-Only Headers
	Computed Includes

	Macros
	Object-like Macros
	Function-like Macros
	Macro Arguments
	Stringification
	Concatenation
	Variadic Macros
	Predefined Macros
	Undefining and Redefining Macros
	Directives Within Macro Arguments
	Macro Pitfalls
	Misnesting
	Operator Precedence Problems
	Swallowing the Semicolon
	Duplication of Side Effects
	Using __auto_type for Local Variables
	Self-Referential Macros
	Argument Prescan

	Conditionals
	Uses of Conditional Directives
	Syntax of Preprocessing Conditionals
	The #ifdef directive
	The #if directive
	The defined test
	The #else directive
	The #elif directive

	Deleted Code

	Diagnostics
	Line Control
	Null Directive

	Integers in Depth
	Integer Representations
	Maximum and Minimum Values

	Floating Point in Depth
	Floating-Point Representations
	Floating-Point Type Specifications
	Special Floating-Point Values
	Invalid Optimizations
	Floating Arithmetic Exception Flags
	Exact Floating-Point Arithmetic
	Rounding
	Rounding Issues
	Significance Loss
	Fused Multiply-Add
	Error Recovery
	Exact Floating-Point Constants
	Handling Infinity
	Handling NaN
	Signed Zeros
	Scaling by Powers of the Base
	Rounding Control
	Machine Epsilon
	Complex Arithmetic
	Round-Trip Base Conversion
	Further Reading

	Compilation
	Directing Compilation
	Pragmas
	Pragma Basics
	Severity Pragmas
	Optimization Pragmas

	Static Assertions

	Type Alignment
	Aliasing
	Aliasing and Alignment
	Aliasing and Length
	Type Rules for Aliasing

	Digraphs
	Attributes in Declarations
	Signals
	GNU Free Documentation License
	Index of Symbols and Keywords
	Concept Index

